Que valent les disques Azure ?

Microsoft vient d’annoncer il y quelques jours la disponibilité générale des disques Ultra dans plusieurs régions Azure, dont Suisse Nord. Depuis quelques mois déjà, un nouveau type de disque, appelé Premium SSD v2, a également fait son apparition sur Azure.

Au total, 5 types de disque managé sont disponibles pour les machines virtuelles Azure. SLA, IOPS, débit, taille, région ou encore sauvegarde sont quelques-uns des paramètres à prendre en compte lors de ce choix.

Dans cet article, nous allons aborder quelques points définissant les différents types de disque Azure, et nous ferons également quelques tests de performances IOPS et Débit. Durant mes tests, j’ai relevé des valeurs de latence très hautes. Je ne pense pas qu’elles représentent la réalité, et c’est pour cela qu’elles vous seront affichées mais pas commentées.

Compte-tenu de mes possibilités, à l’heure où ces lignes sont écrites, les tests ne porteront que sur les 4 types de disque suivants :

  • Premium SSD
  • Standard SSD
  • Standard HDD
  • Ultra disk

A quoi correspondent les IOPS d’un disque ?

IOPS (input/output operations per second en anglais, opérations d’entrée-sortie par seconde) est une unité de mesure commune en informatique. Elle est utilisée dans les tests de performance de supports de stockage tels les disques durs (HDD), solid-state drives (SSD) et réseaux de stockage SAN.

Wikipédia

Une courte vidéo de John vaut mieux qu’un long discours ???? :

A quoi correspond le débit d’un disque ?

Taux de transfert (ou débit) : quantité de données pouvant être lues ou écrites sur le disque par unité de temps. Il s’exprime en bits par seconde.

CommentCaMarche.net

Merci encore une fois à John pour ses vidéos :

Quelles sont les tailles disponibles pour un disque Azure ?

Azure vous propose de créer des disques très petits ou très grands. La plupart des types de disque peuvent aller jusqu’à 64 Tio :

Quels sont les coûts d’un disque Azure ?

Il existe deux principaux coûts aux disques managés d’Azure. La taille du disque et les transactions influent sur le montant mensuel :

  • Taille du disque : Un disque managé Azure est facturé toutes les heures au niveau supérieur le plus proche de sa taille. Autrement dit, un disque de 120 Go coûte autant qu’un disque de 128 Go, que la machine virtuelle soit allumée ou non.
  • Transaction : Sont appelées transaction, les lectures, les écritures, … effectuées par le disque, elles sont facturées par paquet de 10 000 transactions. Certains types de disque, comme les disques Premium ou Ultra, incluent le coût des transactions dans leur tarification les coûts sont alors plus prévisibles et mieux maîtrisés.

Voici une brève comparaison tarifaire pour un disque de 128 Go en Europe de l’Ouest, selon Azure Pricing Calculator :

  • Premium SSD : 20.13 CHF / mois
  • Premium SSD v2 : 11.49 CHF / mois
  • Standard SSD : 12.63 CHF / mois
  • Standard HDD : 6.39 CHF / mois
  • Ultra disk : 88.73 CHF / mois

Pourquoi le type de disque influe sur la SLA d’une machine virtuelle Azure ?

Azure est découpé en centaines de services. Chaque service dispose de sa propre SLA, elle-même calculée selon des paramètres précis.

Certains services proposent différents niveaux de performances et de fonctionnalités. Ces changement influent souvent sur l’architecture ou les composants physiques. Cela joue naturellement sur la SLA. Microsoft met à disposition une liste des SLA par service, régulièrement mise à jour.

Derrière chaque disque d’Azure se trouve une technologie de stockage. Microsoft se base donc sur cette SLA pour calculer la SLA de la machine virtuelle :

Quel scénario pour quel type de disque ?

Le coût du disque reste un facteur important pour une machine virtuelle. Néanmoins, Microsoft conseille un ou plusieurs types de disque, selon le rôle que celle-ci doit jouer :

Pourquoi les machines virtuelles Azure ont-elles un maximum d’IOPS ?

Quand vous sélectionnez une taille de machine virtuelle lors de sa création, une colonne concerne la performance des disques et doit attirer votre attention :

Les machines virtuelles d’Azure ont donc elles aussi un plafond IOPS :

Ce nombre maximal d’IOPS ne garantit en rien la performance de vos disques rattachés, mais agira en goulet d’étranglement si la puissance demandée par vos disques est supérieure à cette limite :

Etape 0 – Rappel des prérequis :

Peu de prérequis sont nécessaires pour réaliser les tests de performances des disques Azure :

  • Un tenant Microsoft
  • Une souscription Azure valide

Dans cet article, nous allons déployer une machine virtuelle Azure, avec différents types de disque. Cela nous permettra de comparer leurs performances.

Etape I : Enregistrement de la souscription Azure :

Tous les types de disque sont accessibles, à l’exception du nouveau type de disque Premium SSD v2. A l’heure où ces lignes sont écrites, un enrôlement de votre souscription Azure est encore nécessaire pour déployer ces derniers.

Cliquez-ici pour accéder au formulaire Microsoft :

Une fois le formulaire rempli, il ne vous restera qu’à attendre un retour de la part de Microsoft pour tester ce nouveau type de disque.

En attendant, rien ne vous empêche de continuer les étapes de cet article pour tester les autres types.

Etape II : Déploiement de la machine virtuelle Azure

Afin de tester différents types de disque, j’ai déployé une seule machine virtuelle sur Windows Server. J’ai choisi une machine virtuelle de type D8s v5 pour disposer de :

  • Une puissance de calcul CPU suffisante
  • Un nombre maximal d’IOPS élevé
  • Une limitation haute pour le nombre maximal de disques de données

Dans l’onglet des disques :

  • Pensez à cocher la case de comptabilité Ultra disque.
  • Pour les tests, tous les disques ont une taille proche pour comparer des performances de même tranche.
  • Quelques gigas seulement les séparent pour les identifier plus facilement par leur taille.
  • J’ai ajouté un second disque type Premium SSD, de plus grande capacité que les autres, pour mesurer l’impact sur les performances selon la taille.
J’ai aussi retiré le cache d’hôte pour ne pas avoir de variation de résultats.

Retirez l’adresse IP publique si vous utilisez comme moi le service Azure Bastion :

Quand la validation est réussie, lancez le déploiement de votre machine virtuelle de test :

Une fois le déploiement terminé, cliquez ici pour consulter votre machine virtuelle :

Configurez au besoin les performances de votre Ultra disk :

J’ai configuré ces valeurs pour tester les limites liées à ma machine virtuelles. Attention à la consommation Azure qui peut s’envoler très vite ???????? :

Déployez également le service Azure Bastion pour vous y connecter plus facilement :

Attendez quelques minutes la fin du déploiement d’Azure Bastion, puis connectez-vous à votre machine virtuelle de test avec le compte d’un administrateur local :

Etape III – Configurations des disques de données :

Une fois connecté à votre session à distance, ouvrez le gestionnaire de disque Windows :

Le gestionnaire de disque Windows vous propose automatiquement de lancer l’initialisation des disques de données ajoutés, cliquez sur OK :


Ajoutez un volume simple sur chacun des disques ajoutés :

Conservez toutes les options de bases pour chaque volume créé :

Contrôlez la présence des 5 partitions dans l’explorateur de fichier, renommez-les au besoin :

Etape IV – Installation de l’outil de mesure Diskspd :

DISKSPD est un outil que vous pouvez personnaliser pour créer vos propres charges de travail synthétiques. Nous utiliserons la même configuration que celle décrite ci-dessus pour exécuter des tests d’évaluation. Vous pouvez modifier les spécifications pour tester différentes charges de travail.

Microsoft Learn

Microsoft recommande d’utiliser l’utilitaire DiskSpd (https://aka.ms/diskspd) pour générer une charge sur un système de disques (stockage) et … pour mesurer les performances du stockage et obtenir la vitesse maximale disponible en lecture/écriture et les IOPS du serveur spécifique.

Windows OS Hub

Sur votre machine virtuelle de test, téléchargez l’exécutable via ce lien Microsoft, puis ouvrez l’archive ZIP téléchargée :

Copiez le contenu de l’archive dans un nouveau dossier créé sur le disque C :

L’exécutable se trouve dans le sous-dossier amd64 :

Les 2 étapes suivantes sont dédiées aux tests de performances des disques via l’application Diskspd. Microsoft met d’ailleurs à disposition un protocole similaire de tests juste ici :

  • Deux séries de tests sont conseillées pour exploiter le meilleur des deux caractéristiques :
    • IOPS
    • Débit
  • Le changement entre ces deux séries se fera au niveau de la taille des blocs.

Etape V – Tests des IOPS des disques Azure :

Commencez une première salve de tests pour déterminer les IOPS maximums sur chacun des disques.

Ouvrez le programme de ligne de commande, puis positionnez-vous dans le dossier de l’exécutable Diskspd :

Lancez les commandes des test suivantes, une à une ou à la chaîne, en modifiant les paramètres si besoin :

diskspd.exe –c50G -d120 -r -w100 -F4 -o128 -b8K -Sh -L E:\diskpsdtmp.dat > IOPS-PremiumSSD.txt
diskspd.exe –c50G -d120 -r -w100 -F4 -o128 -b8K -Sh -L F:\diskpsdtmp.dat > IOPS-StandardSSD.txt
diskspd.exe –c50G -d120 -r -w100 -F4 -o128 -b8K -Sh -L G:\diskpsdtmp.dat > IOPS-StandardHDD.txt
diskspd.exe –c50G -d120 -r -w100 -F4 -o128 -b8K -Sh -L H:\diskpsdtmp.dat > IOPS-PremiumSSD1024.txt
diskspd.exe –c50G -d120 -r -w100 -F4 -o128 -b8K -Sh -L I:\diskpsdtmp.dat > IOPS-UltraDisk.txt

Les arguments utilisés pour diskspd.exe sont les suivants :

  • -c50G : taille du fichier 50 GB (il est préférable d’utiliser une taille de fichier importante pour qu’il ne parte pas dans le cache du contrôleur de stockage)
  • -d120 : durée du test en secondes
  • -r : opérations de lecture/écriture aléatoires
  • -w100 : rapport entre les opérations d’écriture et de lecture 100%/0%
  • -F4 : nombre de threads max
  • -o128 : longueur de la file d’attente
  • -b8K : taille du bloc
  • -Sh : ne pas utiliser le cache
  • -L : mesure de la latence
  • E:\diskpsdtmp.dat : chemin du fichier généré pour le test
  • > IOPS-PremiumSSD.txt : fichier de sortie des résultats

En attendant la fin du traitement, ouvrez Resource Monitor et constatez la charge maximale du disque :

Une fois tous les tests terminés, retrouvez les fichiers des résultats dans le même dossier que l’exécutable :

Ouvrez chacun des fichiers de résultats, puis descendez au paragraphe suivant :

Pour plus de clarté, j’ai synthétisé tous mes résultats IOPS dans le tableau ci-dessous :

Etape VI – Tests débits des disques :

Continuez avec une seconde salve de tests pour mesurer les débits maximums des types de disque Azure.

Ouvrez le programme de ligne de commande si vous l’aviez fermé, puis repositionnez-vous dans le dossier de l’exécutable Diskspd :

Lancez les commandes de tests suivantes, une à une ou à la chaîne, en modifiant leurs paramètres si besoin :

diskspd.exe –c50G -d120 -r -w100 -F4 -o128 -b64K -Sh -L E:\diskpsdtmp.dat > Throughput-PremiumSSD.txt
diskspd.exe –c50G -d120 -r -w100 -F4 -o128 -b64K -Sh -L F:\diskpsdtmp.dat > Throughput-StandardSSD.txt
diskspd.exe –c50G -d120 -r -w100 -F4 -o128 -b64K -Sh -L G:\diskpsdtmp.dat > Throughput-StandardHDD.txt
diskspd.exe –c50G -d120 -r -w100 -F4 -o128 -b64K -Sh -L H:\diskpsdtmp.dat > Throughput-PremiumSSD1024.txt
diskspd.exe –c50G -d120 -r -w100 -F4 -o128 -b64K -Sh -L I:\diskpsdtmp.dat > Throughput-UltraDisk.txt

Les deux paramètres ayant changés rapport aux commandes de test IOPS sont :

  • -b8K : taille du bloc
  • > Throughput-PremiumSSD.txt : fichier de sortie des résultats

Une fois les tests débits terminés, retrouvez les fichiers dans le même dossier que les IOPS :

Ouvrez chacun des fichiers de résultats de débits et compilez-les dans un tableau :

Etape VII – Analyse des résultats IOPS / Débits :

Après analyse des résultats de chaque type de disque, comparez-les à la documentation Microsoft : on retrouve bien des valeurs approchantes pour les IOPS et les débits. Voici quelques explications :

Premium SSD :

  • Premium SSD P10 : 3548 IOPS – 162 Mio/sec
  • Premium SSD P30 : 5099 IOPS – 194 Mio/sec

Le nombre d’IOPS et le débit garantit augmentent par parlier, en rapport avec la taille du disque.

  • A partir de 4 Gio et jusqu’à 512 Gio, le mode Burst est disponible et s’active automatiquement selon la charge, comme le montre le test réalisé.
  • A partir de 1024 Gio, les performances de base sont bien meilleures, mais le mode Burst s’active uniquement sur demande.

Voici d’ailleurs l’excellente vidéo de John sur le fonctionnement du mode Burst dans le temps :

Durant le premier test, le disque Premium SSD d’1 Tio n’a pas utilisé le mode Burst et est resté aux alentours de 5000 IOPS et 200 Mio/sec, soit les valeurs provisionnées sur un disque P30.

L’activation du burst à la demande doit se faire sur le disque, uniquement lorsque ce dernier est détaché ou quand la machine virtuelle est désallouée, donc éteinte.

Pour effectuer un test de burst sur le disque P30, éteignez votre machine virtuelle et cochez la case suivante sur le disque, puis rallumez-là :

Voici les résultats IOPS / débits du disque Premium SSD d’un 1 Tio avec le mode burst à la demande :

  • Premium SSD P30 + Burst : 19321 IOPS – 967 Mio/sec

Le test de débit est bon, mais la valeur IOPS aurait dû se rapprocher des 30 000 IOPS. L’écart s’explique à cause de la machine d8s_v5, qui vient limiter les performances du mode burst du disque.

Cela n’empêche pas d’avoir de performances très honorables. Passons maintenant au disques Standard SSD.

Standard SSD :

Je trouve le test de débit un peu faible comparé au tableau Microsoft :

  • Standard SSD E10 : 600 IOPS – 38 Mio/sec

Standard HDD :

Pour celui-ci, les résultats des tests sont cohérents avec la documentation Microsoft :

  • Standard HDD S10 : 543 IOPS – 35 Mio/sec

Rappel important : Pour les disques de type standard HDD, chaque opération a un impact sur la facturation.

Ultra disk :

Ce type de disque apporte le plus de flexibilité car ils sont disponibles à partir de 4 Gio et jusqu’à 64 Tio. De plus, la SLA qui les couvre est très élevée : 99.99 %.

Comme le montre l’écran de paramétrage de notre test, nous pouvons jouer avec les limites débit et IOPS selon des besoins très précis, et cela sans aucun redémarrage de la machine virtuelle.

Les limites maximales des IOPS et des débits sont très hautes, comme le montre le tableau ci-dessous :

Rappel important : Pour les disques Ultra, ces options ont un lourd impact sur la facturation.

Le test d’IOPS sur le disque ultra a plafonné à 20 000 IOPS car nous avons là encore été bridé par la limite d’IOPS de la machine virtuelle d8s_v5. Le tableau ci-dessous nous affiche cette limite et le mode burst possible :

Les machines virtuelles les plus puissantes acceptent jusqu’à 80 000 IOPS, ce qui reste en dessous de la limite maximale des IOPS des plus puissants disques ultra. C’est pour cela que ces derniers peuvent être utilisés en tant que disques partagés, pour prendre en charge plusieurs machines virtuelles.

Conclusion :

Je peux déjà commencer par vous dire que j’aurais bien aimé tester un disque Premium SSD v2 ????. Cela devrait arriver sous peu, je vous ferai alors une mise à jour de cet article.

Cela dit, je pense que les performances et les usages de ces derniers sont proches des disques Ultra. A ce titre, je pense que la stratégie de Microsoft est bien de démocratiser la performance et la customisation des disques selon les besoins, avec un prix bien plus attractif ✌️????

Edit :

Seulement quelques jours après la publication de mon article, j’ai reçu un avis favorable de la part d’un Product Manager de chez Microsoft pour tester les disques Premium SSD v2, sur une souscription Azure de mon tenant, en disponibilité générale depuis octobre 2022.

Je suis parti donc sur un disque Premium SSD v2 avec les caractéristiques suivantes :

Pour rappel, voici quelques caractéristiques maximales pour un disque Premium SDD v2 :

  • Taille maximale : 65 536 Gio
  • IOPS provisionnées : 80 000 IOPS
  • Débit provisionné : 1200 Mio / Sec

Afin d’atteindre les performances maximales de mon disque, j’ai créé une machine virtuelle D32s v5, qui dispose des limites suivantes :

Grâce à Diskspd et aux commandes suivantes :

diskspd.exe –c50G -d120 -r -w100 -F4 -o128 -b8K -Sh -L E:\diskpsdtmp.dat > IOPS-PremiumSSDv2.txt
diskspd.exe –c50G -d120 -r -w100 -F4 -o128 -b64K -Sh -L E:\diskpsdtmp.dat > Throughput-PremiumSSDv2.txt

Cela m’a permis de compléter mes tableaux de performances :

Il s’agit sans aucun doute d’un type de disque flexible aux performances incroyables. Voici un rappel du prix bien moins chère qu’un Ultra disk ????

Attention aux limitations encore présentes sur le disques Premium SSD v2.

AVD : Protocole UDP pour tous !

Ce nouvel article est focalisé sur la partie réseau d’AVD, il reste dans la continuité de celui déjà consacré à RDP Shortpath, écrit il y a plusieurs mois déjà. Azure Virtual Desktop est capable d’établir des connexions de bureau à distance via deux protocoles : TCP et UDP. L’utilisation du second permet d’améliorer les performances grâce à un débit plus important et une gestion différente des paquets.

Pour vous remettre dans le bain, voici un rappel de l’excellente vidéo de Dean à ce sujet :

Pourquoi doit-on se préoccuper du protocole UDP ?

L’impact du protocole dans un environnement dédié au bureau à distance est majeur. Denis Gundarev nous explique avec simplicité l’inadéquation entre le protocole TCP dans le cadre d’une connexion RDP :

TCP est un excellent protocole pour la livraison garantie de petites quantités de données. Les applications telles que les navigateurs ou les clients de messagerie se contentent d’envoyer les données et de les oublier. Le protocole assure la cohérence et l’ordre des paquets et relance la transmission si la livraison échoue. Cependant, RDP utilise des connexions de longue durée et les connexions TCP de longue durée sont problématiques.

Le protocole TCP est idéal pour les réseaux locaux, mais pas pour l’Internet. Oui, si le paquet est perdu, il sera retransmis. La disponibilité de la bande passante est un facteur essentiel. Malheureusement, les algorithmes de contrôle de congestion TCP limitent la possibilité de saturer le réseau.

Pour vous donner une meilleure idée, voici une vidéo comparative montrant visuellement l’impact du protocole si une partie de paquets est perdue :

Pourquoi refaire un article sur ce sujet ?

En faisant différents tests sur des environnements Azure Virtual Desktop, je me suis rendu compte « par hasard » de l’activation quasi systématique du protocole UDP lors des ouvertures de session, sans aucune action ni configuration de ma part.

J’ai donc effectué différents tests sur 3 environnements AVD distincts :

  • VM : Standard D8s v3 (8 vCPU, 32 GiB memory) / OS : Windows 10 21H2
  • VM : Standard D2s v3 (2 vCPU, 8 GiB memory) / OS : Windows 11 22H2
  • VM : Standard D8s v3 (8 vCPU, 32 GiB memory) / OS : Windows 11 21H2

Dans les 3 environnements, j’ai constaté exactement le même mécanisme :

  • Première ouverture de session en TCP
  • Seconde ouverture de session en UDP

Aucune configuration via la règle de registre ICEControl, pour activer le RDP Shortpath, n’a été mise en place avant ces tests :

Comment cela est-ce possible ?

Tout simplement car la fonctionnalité UDP a été déployée sur l’ensemble des environnements AVD, de production et de validation : RDP Shortpath for public networks in Azure Virtual Desktop – Microsoft Community Hub.

Comme l’indique ce billet Microsoft , la disponibilité générale du routage via le protocole UDP pour les connexions transitant via un réseau public est disponible depuis la date du 6 septembre dernier. Ils recommandent même de retirer la précédente clef de registre.

A noter que certaines ouvertures de sessions se sont malgré faites tout en TCP. Bien souvent, la fermeture / réouverture de la session m’a permis de retrouver un protocole UDP. Je pense que certains éléments influent sur cela, sans vraies certitudes.

Peut-on désactiver le protocole UDP afin de rester systématiquement en TCP ?

Cela est parfaitement possible et nécessaire dans certains scénarios. Microsoft propose 3 méthodes pour retrouver l’état initial en TCP :

  • Désactivation au niveau de la machine virtuelle AVD
  • Désactivation au niveau du client AVD
  • Désactivation via Intune

Pour la première méthode, il est nécessaire d’intervenir au niveau de la machine AVD, ou de l’implémenter via une GPO.

Connectez-vous sur la machine virtuelle AVD avec un compte administrateur.

Ouvrez l‘Editeur de groupes polices locales :

Rendez-vous dans le menu suivant :

Computer Configuration > Administration Templates > Windows Components > Remote Desktop Services > Remote Desktop Connection Host > Connections

Ouvrez le paramètre ci-dessous :

Cochez les options comme ceci, puis fermez la session et rouvrez là :

Constatez bien que votre connexion RDP utilise le protocole TCP :

La configuration et le résultat sont identiques pour les machines en Windows 10.

Annexe

Durant ces tests j’ai également remarqué que mes environnements Azure Virtual Desktop fonctionnaient très bien malgré l’absence de l’argument RDP targetisaadjoined dans les propriétés RDP du pool d’hôtes AVD :

Avant :

Maintenant :

C’est toujours appréciable d’avoir une chose de moins à penser dans la configuration ????.

Conclusion

Microsoft continue d’améliorer son outil et facilite sa configuration. La simplification et l’automatisation du protocole UDP améliore les performances et donc l’expérience utilisateur. Nul doute que Microsoft va continuer à travailler dans ce domaine pour accroitre le nombre d’utilisateurs sur un de leurs produits phares.

Comprenez les coûts d’une ressource Azure

Un des principes fondamentaux du Cloud est fonctionner, et de facturer, selon la consommation. Cela permet de payer un service uniquement quand celui-ci est utilisé. Associé à ce principe, une transparence des coûts est présente via une décomposition précise.

Néanmoins, la compréhension de la tarification et de la facturation d’Azure n’est pas chose aisée durant la mise en place des premières architectures, tant la granularité tarifaire peut s’avérer pleine de coûts combinés et de variantes possibles selon les scénarios.

Un premier article dédié à l’optimisation des coûts est déjà disponible sur ce blog juste ici. Ce second article est quant à lui dédié à la décomposition tarifaire d’une machine virtuelle, très utilisée sur Azure.

Optimisez votre Azure : 1/4 – Les Coûts

Comment fonctionne la politique tarifaire d’Azure ?

Azure propose deux méthodes de tarification, assez classiques chez tous les fournisseurs de Cloud :

  • Paiement à la demande : aussi appelé PAYG (Pay-As-You-Go), cette méthode de facturation est sans engagement. Le décompte tarifaire commence selon les cas quand la ressource est créée ou allumée, et se termine quand la ressource est supprimée ou arrêtée.
  • Engagement de durée : disponibles sur certaines ressources Azure, les engagements sur Azure sont généralement disponibles sur un ou trois ans avec un paiement unique en début d’engagement ou mensuellement. Durant cette durée, le coût de la ressource n’est plus facturé en PAYG, on profite alors d’un rabais très intéressant. L’annulation de l’engagement durant la période n’est pas toujours possible.

Il est possible de combiner les deux méthodes dans un seul environnement Azure sans difficulté.

Attention : un engagement ne couvre généralement pas l’ensemble des coûts d’une ressource Azure.

Quels sont les principaux types de coûts d’une ressource Azure ?

La liste des prix publics des ressources est accessible sur la Calculatrice de prix Azure.

Aucun identifiant n’est nécessaire.

Rien de telle qu’une vidéo pour comprendre comment celui-ci fonctionne :

Seyfallah Tagrerout

Le coût d’une ressource Azure se décompose généralement en plusieurs types de coût. Par exemple, le stockage de données sur Azure générera les coûts suivants :

  • Le volume de stockage : Mo, Go, To, …
  • Le volume de transactions : lectures, écritures, …
  • Le volume de données transitant par les réseaux : Mo, Go, To, …
  • Les services additionnels : réplication, sauvegarde, sécurité, …
Ce lien ouvre une page détaillée des coûts.

Dans cet article, nous allons nous intéresser aux machines virtuelles Azure et à quatre de ses principaux types de coûts :

  • Le Calcul : le traitement de l’information nécessite un service capable d’effectuer des calculs. Azure considère couple processeur / mémoire comme un couple de calcul. On retrouve cet ensemble dans les machines virtuelles, les serveurs de base de données ou les services Web. Assez simplement, le coût du service calcul va dépendre de sa taille, donc de sa technologie, de son nombre de coeurs et de sa taille de mémoire.
  • Le Stockage : Bien souvent, de l’information a besoin d’être stockée dans une architecture. Qu’elle soit utilisée par le service de calcul, mise à disposition pour des accès externes ou pour des besoins de sauvegarde, le stockage disposera généralement de 3 variables : taille (Go; To), débit (Mo/sec; Go/sec) et puissance transactionnelle (IOPS).
  • Le Réseau : Une ressource Azure a besoin de communiquer avec des utilisateurs ou d’autres ressources IT. Par exemple, le réseau virtuel Azure est un moyen simple de faire communiquer des ressources Azure entre elles, une passerelle VPN ou ExpressRoute Azure sera un moyen facile et sécurisé d’établir une communication vers un environnement local. Comme pour le stockage, la tarification réseau repose sur des variables : taille de la bande passante et le volume de données en transition.
  • La licence logicielle : Là encore, la ressource Azure sera souvent exploitée par un système d’exploitation et/ou logiciel, dont certains fonctionnent sous licence payante. Dans l’exemple des licences Microsoft, comme Windows Server ou SQL Server, la tarification Azure repose sur la taille du service de calcul, comme le nombre de coeurs des machines virtuelles. Il est aussi possible de réduire les coûts des licences en réutilisant, sous certaines conditions, des licences existantes.

La machine virtuelle Azure est le meilleur exemple car elle est présente dans de nombreux déploiements Cloud et comporte une variété de coûts Azure.

Tous les champs indiqués dans la Calculatrice de prix Azure ont un impact sur le prix, mais les trois champs entourés en rouge sont ajustables selon les besoins dans le temps :

Taille de l’instance de calcul :

Pas de mystère, plus une machine virtuelle dispose de coeurs et/ou de mémoire, plus son coût est élevé. Il est donc important de choisir une taille adaptée selon les besoins pour éviter des ralentissements ou une sous-utilisation.

Peut-on moduler la taille de la machine virtuelle selon les besoins ?

Il est envisageable de redimensionner la taille durant la nuit ou le week-end quand la période de calcul est plus faible, via le portail Azure ou même de l’automatiser grâce à un script.

Attention : un changement de taille engendre un repositionnement de la machine virtuelle par l’hyperviseur, donc un redémarrage systématique de l’OS.

Durée de fonctionnement :

Une fois créée, une machine virtuelle Azure oscille sur 3 différents statuts :

  • Démarrée : fonctionnement normal et tarification des 4 coûts : calcul, stockage, réseau et licence.
  • Arrêtée : machine virtuelle non accessible, tarification maintenue pour le calcul et le stockage.
  • Arrêtée (Désallouée) : machine virtuelle non accessible, tarification maintenue pour le stockage.

Dans certains cas, l’arrêt complet de la machine virtuelle est donc une approche intéressante pour réduire les coûts. Imaginez un scénario où la machine virtuelle ne démarre qu’au moment où l’utilisateur en a besoin, par exemple durant les heures des jours de la semaine.

Important : à noter que le démarrage d’une machine virtuelle dépend aussi des ressources disponibles dans le datacenter Azure où elle se situe. Ce point de détail a pu être épineux, par le passé, pour certaines tailles de machines exotiques.

Engagement, ou pas :

Comme indiqué plus haut, deux méthodes de facturations sont disponibles sur Azure. Prendre un engagement sur une machine virtuelle est une méthode pratique pour diminuer les coûts quand l’utilisation de la ressource est en 24/7.

Comment fonctionne une instance réservée ?

Il faut voir une instance réservée Azure comme une place de parking, louée pour une durée d’un ou trois ans auprès de Microsoft :

L’instance réservée est une méthode d’engagement historique, elle a depuis été complétée avec le Plan d’économies, disponible depuis quelques mois :

Disque de stockage :

Le stockage de données est un élément indispensable pour une machine virtuelle Azure. Il s’agit d’un coût que l’on paye en permanence, même si la machine virtuelle est éteinte. La taille, la SLA et les performances des disques sont des vecteurs de coûts et donc d’économies potentielles.

Quatre niveaux de disque sont actuellement disponibles sure Azure :

  • Standard HDD
  • Standard SDD
  • Premium SSD v1/v2
  • Ultra disk

L’économie va alors dépendre des besoins : une taille de disque adaptée, des performances suffisantes vous permettrons de répondre au mieux à ces derniers et donc de réduire les coûts :

Les disques premium SSD v2 apportent plus de flexibilité sur le choix des performances voulues.

Quelques remarques :

  • La taille du disque dépendra de la taille de l’image ou de la partition. Il n’est pas possible de choisir une taille plus petite que l’image.
  • Certains niveaux de disques n’incluent pas les coûts liés au volume de transaction dans le prix de base. Il faut donc en tenir compte dans le calcul de coût du stockage.
  • Le meilleur prix final, et donc la meilleure économie possible, peut reposer sur l’achat de disque plus cher pour ne pas payer un gros et coûteux volume de transactions.
  • Le changement de niveau de disque est possible au démarrage de la machine virtuelle via le portail Azure ou avec la mise en place d’un script.

Le réseau :

Inutile de se le cacher, la tarification du réseau d’Azure n’est pas simple. Azure considère un transfert de données et son prix change en fonction de sa destination :

Interne à la région Azure : transfert de données entre deux ressources d’une même région Azure. Dans ce scénario, le coût du traffic est nul, pour la plupart des cas :

A noter que le peering de réseaux virtuels, d’une même région Azure ou non, n’est pas gratuit.

Entre deux régions Azure : certains architectures Cloud sont réparties sur plusieurs régions Azure afin de disposer les ressources au plus près des utilisateurs. Tous les mois, les 5 premiers gigas de transfert de données inter-région sont gratuits :

Vers le réseau internet : tous les mois, les 100 premiers gigas de transfert de données vers internet sont gratuits :

Comme pour toute ressource Azure mise en réseau, une machine virtuelle communique via 2 types de flux :

  • Entrant : connexions entrantes, comme un accès RDP distant ou encore un service web accessible en local ou sur internet. Les flux réseaux entrants vers Azure ne génèrent pas de coûts.
  • Sortant : connexions sortantes, comme un accès RDP distant ou lors d’un téléversement de fichiers. Les flux réseaux sortant d’Azure génèrent des coûts si la destination est en dehors du réseau Microsoft ou sur une autre région Azure.
Le routage du trafic via Microsoft Global Network sera plus résilient qu’un routage Internet, mais un peu plus cher.

Licences logicielles :

La majorité des machines virtuelles vont fonctionner sur Windows ou Linux. Bien souvent, un système d’exploitation nécessite de disposer d’une licence. Microsoft propose donc de payer cette licence uniquement quand la machine est démarrée.

Vous retrouvez ce détail personnalisable dans le Calculateur de prix Azure :

Deux facteurs existent sur le prix de la licence en PAYG :

  • Le coût de licence va dépendre du nombre de coeurs.
  • Un nombre d’heures moins important fera baisser le montant du coût de licence.

Qu’est-ce qu’Azure Hybrid Benefit ?

Azure Hybrid Benefit est un avantage en matière de licences qui vous permet de réduire considérablement les coûts d’exécution de vos charges de travail dans le cloud. Son fonctionnement consiste à vous autoriser à utiliser vos licences Windows Server et SQL Server compatibles sur Azure.

L’activation de cette fonction est faisable pendant ou après la création de la machine virtuelle en quelques clics :

Vous pouvez acheter des licences en souscription annuelle ou pluriannuelle. Les économies réalisées représentent des sommes non négligeables.

Enfin, il ne faudra pas oublier d’autres coûts annexes comme la sauvegarde de données, la sauvegarde de logs ou de métriques, ou encore la mise en place d’un service de reprise après sinistre, qui seront rattachés à différents services Azure.

Conclusion

La tarification d’un hébergeur Cloud peut sembler complexe, mais une prédiction des coûts est possible grâce à l’utilisation du Calculateur de prix Azure. La documentation Azure est aussi là pour mieux comprendre les différences entre les SKU et leurs politiques tarifaires.

Enfin, je conseille également un suivi de la consommation post-déploiement via le Gestionnaire des coûts Azure afin de comparer votre prévision avec la réalité, et donc d’améliorer vos estimations futures.

Ne bougez pas, Azure Arc vient à vous !

Ayant eu l’occasion de participer à un évènement conjoint entre TD SYNNEX, Microsoft et DELL et dédié à Azure Stack HCI, j’ai pu m’intéresser au service qui oeuvre dans l’ombre : Azure Arc. L’ouverture d’Azure sur d’autres sites IT que leurs propres datacenters est indispensable, beaucoup d’architectures IT reposent en effet sur des serveurs locaux, ou sont déjà hébergées auprès d’autres fournisseurs Cloud.

Dans cet article, nous allons effectuer ensemble plusieurs méthodes d’intégration très facile de serveurs au service Azure Arc. Nous en profiterons pour faire tour dans les fonctionnalités disponibles gratuitement ou payantes sur les ressources Arc déployées.

Qu’est-ce qu’Azure Arc ?

Azure Arc est une passerelle qui étend la plateforme Azure pour vous aider à créer des applications et des services ayant la souplesse nécessaire pour fonctionner dans des centres de données, à la périphérie et dans des environnements multiclouds.

Microsoft

Combien coûte Azure Arc ?

A la base, Azure Arc ne coûte rien. Il vous permet d’effectuer les actions suivantes sans débourser un seul centime :

  • Inventaires des ressources Azure Arc
  • Accès et sécurisation via l’attribution de droits RBAC
  • Gestion via l’outil Windows Admin Center

Mais certains services annexes sont payants :

  • Serveur SQL avec Azure Arc
  • Defender for Cloud
  • Azure Policy Guest Configuration
  • Azure Insights
  • Logs

Puis-je tester moi-même Azure Arc avec une VM Azure ?

Non cela n’est pas possible aussi facilement : Azure n’autorise pas d’intégrer directement une machine virtuelle provenant dans la Marketplace Microsoft dans Azure Arc :

Seulement tout le monde ne dispose pas d’une infrastructure IT prête à servir de cobaye pour tester Azure Arc. C’est pourquoi Microsoft propose Azure Arc Jumpstart.

Le Jumpstart fournit des guides étape par étape pour des scénarios Azure Arc indépendants qui intègrent autant d’automatisation que possible, des captures d’écran et des échantillons de code détaillés, ainsi qu’une expérience riche et complète lors de la prise en main de la plateforme Azure Arc.

azurearcjumpstart.io

Pour en avoir testé quelques-uns, c’est très facile et très bien expliqué.

De mon côté, je vous propose une alternative via un exercice facile pour intégrer des serveurs sur Azure Arc via l’utilisation de ressources uniquement hébergées sur Azure.

Etape 0 – Rappel des prérequis :

Les prérequis suivants sont nécessaires pour réaliser cette démonstration d’Azure Arc :

  • Un tenant Microsoft
  • Une souscription Azure valide

Etape I – Déploiement d’un template ressources :

Pour créer des ressources intégrables dans Azure Arc, j’utilise un template développé par Microsoft et disponible depuis GitHub : Line-of-business application migration : à la base, ce template est destiné à tester le service Azure Migrate.

Ce dernier vous propose de déployer un serveur Hyper-V, dans lequel se trouve un applicatif web réparti sur plusieurs machines virtuelles et une base de données SQL.

Seule la partie initiale, encadrée en rouge, nous intéresse pour Azure Arc :

Par ce template, nous allons donc déployer une machine virtuelle Standard D8s v3 (8 vCPU, 32 GB memory) avec un rôle Hyper-V. Cette dernière hébergera 4 machines virtuelles :

  • Windows Server 2016 + SQL Server 2016
  • Windows Server 2012 Frontend web
  • Windows Server 2012 Frontend web
  • Ubuntu WAF

Comme annoncé plus haut, nous allons uniquement nous intéresser à la première étape : déploiement de l’application web via la machine virtuelle Hyper-V

Pour cela, cliquez ici pour charger la configuration du template directement dans votre tenant :

Renseignez les champs suivants et continuez :

Par défaut :
Le nom d’utilisateur demouser
Le mot de passe demo!pass123

Lancez la création et attendez une heure environ :

Prévoyez au moins une heure à partir du début du déploiement du template pour couvrir l’exécution des scripts.

Remarque : le déploiement du template prend environ 6 à 7 minutes. Une fois le déploiement du modèle terminé, plusieurs scripts supplémentaires sont exécutés pour amorcer l’environnement de laboratoire.

Récupérez l’adresse IP publique suivante :

Ouvrez un nouvel onglet depuis votre navigateur internet avec celle-ci. Vous devriez voir un site web affichant des réservations fictives d’hôtels :

Un déploiement correctement terminé devrait vous afficher cette page.

Supprimez le second groupe de ressources destiné aux tests d’Azure Migrate. Nous ne l’utiliserons pas dans le cadre de nos tests sur Azure Arc :

Ouvrez la machine virtuelle SmartHotelHost et cliquez sur Bastion :

Le service Bastion n’est pas créé, lancez son déploiement avec la configuration par défaut :

N’attendez pas la fin du déploiement de Bastion pour continuer.

Etape II – Configuration d’Azure Arc

La configuration d’Azure Arc est très rapide, utilisez la barre de recherche d’Azure pour retrouver le service Azure Arc :

Avant de commencer l’intégration de machines virtuelles à Azure Arc, nous allons créer un principal de service dédié à cette tâche. Ce principal de service va être utilisé pour l’authentification automatique pendant le processus d’intégration des ressources dans Azure Arc.

Cliquez dans le menu suivant :

Cliquez sur Créer :

Renseignez les champs, puis cliquez sur Créer :

Prenez soin de copier l’ID et le secret de principal de service dans un bloc-notes :

Revenez sur la page d’Azure Arc et constatez son apparition :

Une fois Azure Bastion entièrement déployé, retournez sur votre machine virtuelle SmartHotelHost, puis lancez une connexion RDP via Azure Bastion :

Renseignez les identifiants utilisés dans le template, puis cliquez sur Connecter :

La session RDP d’Azure Bastion s’ouvre alors dans un nouvel onglet de votre navigateur web :

Retournez sur le service Azure Arc depuis votre portail Azure, puis cliquez sur Ajouter dans la section Serveurs :

Plusieurs méthodes d’intégration à Azure Arc sont possibles. Le choix de la méthode va surtout dépendre du volume d’intégration à réaliser. Nous allons en tester plusieurs pour vous faire une meilleure idée.

Etape III – Test d’un ajout simple de serveur :

Cette méthode correspond à l’ajout d’un serveur unique sur Azure Arc. Ce premier script effectue les opérations suivantes :

  • Récupération de l’agent depuis le Centre de téléchargement Microsoft
  • Installation de l’agent sur le serveur
  • Création de la ressource serveur compatible avec Azure Arc

Pour utiliser ce script, cliquez comme ceci :

Azure commence par vous présenter les prérequis nécessaires pour assurer la communication entre le serveur et Azure Arc.

La communication repose sur le port 443 (HTTPS), cela nécessite une ouverture de pare-feu pour les flux sortant, et éventuellement la prise en charge d’un service proxy si besoin :

Aucun blocage réseau n’est présent dans notre environnement de test.

Cliquez sur Suivant et renseignez les champs :

Renseignez si besoin les étiquettes appropriées, puis cliquez sur Suivant :

Copiez le script suivant dans votre presse-papier :

Retournez sur la session RDP ouverte grâce à Azure Bastion, puis ouvrez la console Hyper-V :

Connectez-vous à la machine Windows smarthotelweb1 :

Renseignez le mot de passe de session Windows : demo!pass123

Dans cette nouvelle session, ouvrez la console PowerShell :

Collez le script donné par Azure Arc et appuyez sur Entrée pour lancer son exécution :

Comme attendu, le script procède au téléchargement et à l’installation de l’agent :

Identifiez-vous avec le compte Azure AD adéquat pour continuer le processus d’intégration :

Validez le processus d’authentification par un challenge MFA si besoin :

Fermez la fenêtre d’Internet Explorer :

Le script vous confirme la bonne création de l’objet serveur dans Azure Arc :

Retournez sur la page des serveurs Azure Arc, rafraîchissez la page si besoin :

Etape IV – Test d’un ajout de plusieurs serveurs :

Pour ajouter plusieurs serveurs à la fois sur Azure Arc, nous pouvons utiliser la seconde option.

Celle-ci génère un facilement script transportable puisqu’il gère l’authentification Azure via l’exploitation du principal de service créé précédemment. Ce script effectue les opérations suivantes :

  • Récupération de l’agent depuis le Centre de téléchargement Microsoft
  • Installation de l’agent sur le serveur
  • Création de la ressource serveur sur Azure Arc

Pour continuer, cliquez comme ceci :

Renseignez les champs et le principal de service, puis cliquez sur Suivant :

Renseignez si nécessaire les étiquettes appropriées, puis cliquez sur Suivant :

Copiez le script dans le presse-papier :

Retournez sur la session d’Azure Bastion. Sur la console Hyper-V, connectez-vous à la machine smarthotelweb2 :

Renseignez le même mot de passe : demo!pass123

Ouvrez la console PowerShell :

Collez votre script en prenant bien soin de remplacer le secret du principal de service par celui donné lors de sa création :

Attendez que le traitement d’intégration se termine :

Retournez sur la page des serveurs d’Azure Arc, rafraîchissez la page si besoin :

Nul besoin de fournir une authentification manuelle d’Azure, ce script est donc destiné à être utilisé pour importer massivement des serveurs sur Azure Arc.

Etape V – Test d’un ajout d’un serveur Linux

Azure Arc supporte également les serveurs fonctionnant sous distribution Linux ,via l’utilisation d’un autre script spécifique. Celui effectue les actions suivantes :

  • Récupération du script d’installation à partir du Centre de téléchargement Microsoft
  • Configuration du gestionnaire de packages pour approuver le référentiel
  • Téléchargement de l’agent à partir du référentiel de logiciels Linux de Microsoft
  • Installation l’agent sur le serveur
  • Création de la ressource de serveur sur Azure Arc

Pour continuer, cliquez encore une fois sur la seconde option :

Renseignez à nouveau les champs et le principal de service, puis cliquez sur Suivant :

Renseignez si besoin les étiquettes appropriées, puis cliquez sur Suivant :

Copiez le script dans le presse-papier :

Retournez sur la session d’Azure Bastion. Depuis le serveur Hyper-V, ouvrez directement une console PowerShell et connectez-vous à la machine UbuntuWAF via SSH:

Renseignez le mot de passe : demo!pass123

Collez le script donné par Azure Arc en prenant soin de modifier le secret, puis appuyez sur Entrée pour lancer son exécution :

Laissez la machine redémarrer au besoin :

Une fois le script correctement terminé, vérifiez sur le service Azure Arc l’apparition du serveur Linux :

Etape VI – Test d’un ajout d’un serveur SQL

Une machine virtuelle hébergeant un serveur SQL est également compatible avec Azure Arc et vous permet de le gérer dans votre inventaire. Le processus repose toujours sur le lancement d’un script. Ce dernier effectue les actions suivantes :

  • Vérification de la connectivité de votre environnement à Azure et à la machine spécifiée
  • Intégration de la machine hôte via l’agent Azure Connected Machine si absent
  • Initiation de la découverte d’instances SQL Server
  • Ajout des instances SQL Server de votre machine cible à Azure Arc

Cliquez comme ceci :

Renseignez les champs, puis cliquez sur Suivant :

Copiez le script dans le presse-papier :

Retournez sur la session d’Azure Bastion, sur la console Hyper-V, ouvrez une connexion vers le serveur smarthotelSQL1 :

Renseignez le mot de passe : demo!pass123 :

Désactivez la protection d’Internet Explorer :

Téléchargez Microsoft Edge par ce lien :

Validez les pop-ups d’Edge :

Ouvrez la console PowerShell :

Collez le script précédemment donné par Azure Arc et validez avec la touche Entrée :

Authentifiez-vous avec votre compte Azure. Si aucune fenêtre ne s’ouvre, saisissez l’URL dans votre navigateur web et authentifiez-vous avec votre compte Azure:

Cliquez sur Continuez :

Attendez que le script termine l’intégration du serveur SQL sur Azure Arc :

Une fois terminé, retrouvez le serveur SQL dans la liste des serveurs d’Azure Arc :

L’agent WindowsAgent.SqlServer est bien présent dans les extensions du serveur :

Retrouvez aussi le serveur SQL dans la liste ci-dessous d’Azure Arc :

Comme un serveur SQL Azure, cette intégration sur Azure Arc apporte une visibilité des bases de données ou apporte une intégration avec Microsoft Defender for SQL :

Etape VII – Test de fonctionnalités d’Azure Arc

Un grand nombre de fonctionnalités sont disponibles pour faciliter la gestion des serveurs intégrés sur Azure Arc. J’en ai sélectionné quelques-unes pour vous :

Windows Admin Center

Inauguré en 2018, Windows Admin Center est une interface web destinée à la configuration de serveurs, comme le ferait déjà Server Manager, mais à distance.

Voici un poster Microsoft récapitulant les fonctionnalités de Windows Admin Center :

Il est également possible de télécharger Windows Admin Center sur n’importe quelle machine Windows 10 (version 1709 ou ultérieure), ou Windows Server (version 2016 ou ultérieure) :

Dans notre exemple, l’installation de Windows Admin Center est nécessaire avant de pouvoir l’utiliser :

Lancez l’installation de Windows Admin Center :

Attendez plusieurs minutes :

Une fois terminée, la notification suivante apparaît alors :

Retournez sur le groupe des ressources Azure Arc pour y ajouter un rôle RBAC supplémentaire à votre identité Azure AD :

Ajoutez le rôle comme ceci :

Retournez sur Windows Admin Center et constatez la disparition de la notification, puis connectez-vous :

Patientez si besoin plusieurs minutes.

Retrouvez la console Windows Admin Center et toutes ses fonctionnalités, comme :

  • Accès au registre Windows
  • Configuration réseau et pare-feu
  • Accès aux journaux d’évènements Windows
  • Explorateur de fichiers

Il est même possible d’ouvrir une session RDP depuis Windows Admin Center ????

Renseignez le mot de passe de session : demo!pass123

Defender for Cloud

Microsoft Defender pour les serveurs fournit la détection des menaces ainsi que des défenses avancées à vos machines Windows et Linux, qu’elles s’exécutent dans Azure, AWS, GCP ou localement. Microsoft Defender pour les serveurs est disponible dans deux plans :Microsoft Doc

Autrement dit, l’intégration d’une ressource dans Microsoft Defender active un grand nombre de mesures de sécurité (capteurs de faille, évaluation des vulnérabilités, threat intelligence, …), mais apporte également la possibilité de piloter ses alertes et ses incidents depuis le centre de sécurité Microsoft.

Deux plans sont disponibles selon le serveur concerné et les fonctionnalités recherchées. Le plan 2 correspond à l’ancien plan appelé Defender for Server :

La liste des avantages de Defender for Server se trouve ici.

L’activation de Defender for Server est facile, cliquez sur un des serveurs Azure Arc, puis rendez-vous dans la section Sécurité et enfin cliquez comme ceci :

Cliquez sur la souscription hébergeant vos ressources Azure Arc :

Activez le plan destiné à Defender for Servers :

Que le serveur soit sous Linux ou Windows, l’installation d’agent est réalisé de la même manière que pour des ressources Azure :

Azure Policy Guest configuration

Comme pour des ressources Azure, Azure Policy prend en charge l’audit de l’état de votre serveur compatible avec Azure Arc grâce aux politiques de configuration des invités. Les définitions de configuration d’invité d’Azure Policy peuvent auditer ou appliquer des paramètres à l’intérieur de la machine.

Il est à noter que ce service est payant pour des ressources non-Azure :

Contrairement à Defender for Cloud où l’activation est possible depuis une souscription Azure pour l’ensemble des ressources de même type, l’activation de cette fonctionnalité doit s’effectuer sur chacun des serveurs Azure Arc :

Cochez les cases voulues :

Les nouvelles polices sont bien visibles, mais en attente de lancement :

Retournez sur l’Hyper-V pour arrêter la machine virtuelle :

Une fois arrêté, redémarrer là :

Attendez un bon quart d’heure pour espérer voir des résultats sur les polices :

Surveillance

Comme pour les ressources Azure, la sauvegarde des logs est aussi disponible. L’activation de Defender for Server Plan 2 automatise sa mise en place et intègre dans le coût 500 Mo journalier pour les logs :

Insights

L’activation de capacités de surveillance supplémentaires permet d’obtenir des informations sur les performances et les dépendances de vos ressources de l’Arc.

Cliquez-ici pour configurer les paramétrages :

Activez le service :

Un Log Analytics Workspace est nécessaire. Choisissez-en un existant ou créez-en un nouveau :

En entendant le déploiement complet, consultez la liste des extensions pour voir apparaître AMA :

AzureMonitorWindowsAgent pour Windows
AzureMonitorLinuxAgent pour Linux

Il faut bien attendre un peu pour avoir de la donnée et en tirer des analyses intéressantes.

Il restera encore beaucoup à dire sur d’autres fonctionnalités, telles que Machine Configuration ou Centre de gestion des mises à jour, …

Conclusion

Microsoft démontre sous ouverture à d’autres environnements via Azure Arc. La centralisation des opérations sur le portail Azure sans tenir compte de la provenance de la ressource IT est une belle avancée car elle facilite la gestion d’infrastructure. Cela permet en plus de pouvoir toujours profiter des derniers services ajoutés par Microsoft.

Azure Virtual Desktop ❤️ FIDO2

Rassurez-vous, Azure Virtual Desktop propose depuis longtemps une intégration avec l’accès conditionnel disponible sur Azure AD. Ce billet, datant déjà de 2019, écrit par Freek Berson, nous montre bien l’intégration entre AVD et FIDO2.

Je souhaitais malgré tout vous écrire un article en français pour détailler le processus de mise en place FIDO2 et les possibilités intéressantes avec AVD.

Qu’est-ce que FIDO2 (Fast IDentity Online 2) ?

La réponse de l’industrie au problème des mots de passe.

FIDO Alliance

Exit donc l’utilisation d’un simple du mot de passe pour valider un processus d’authentification. FIDO2 a été développé par la FIDO Alliance et est à ce jour leur dernière norme.

FIDO2 est bâti sur des spécifications Web Authentication, ou WebAuthn, du World Wide Web Consortium (W3C), donc universel mais disposant de capacités supplémentaires.

Cette vidéo en français explique plusieurs de ces avantages :

  • USB-A ou C ou encore NFC
  • Absence de donnée personnelle sur la clef
  • Code PIN de protection
  • Zone de contact pour valider une présence physique
  • Utilisation pour plusieurs comptes
Bon conseil : toujours avoir deux clefs ????.

Puis-je utiliser une clef FIDO2 pour m’authentifier sur Azure AD ?

Oui, Azure AD supporte un grand nombre de méthodes renforcées pour sécuriser l’authentification des utilisateurs. Vous pouvez retrouver cette liste ici, ou dans le portail Azure, via la page des Méthodes d’authentification :

D’une manière générale, Microsoft déconseille l’utilisation unique de mot de passe pour authentifier un compte (Voir tableau ci-dessous). Azure AD propose à ce jour différentes méthodes dans le cadre d’un processus d’authentification multifacteur :

  • Windows Hello Entreprise
  • Microsoft Authenticator
  • Clés de sécurité FIDO2

Ai-je besoin d’une licence particulière pour utiliser FIDO2 ?

FIDO2 n’exige pas de licence particulière, mais l’accès conditionnel en demandera une. En effet, pour intégrer FIDO2 dans une ou plusieurs polices d’accès conditionnel, il vous faudra une licence Azure Premium P1 ou P2 pour tous les utilisateurs concernés.

FonctionnalitéAzure AD Free – Paramètres de sécurité par défaut Azure AD Free – Administrateurs généraux uniquementOffice 
365
Azure AD Premium P1Azure AD Premium P2
Accès conditionnel
Accès conditionnel basé sur les risques

Il ne faut pas confondre l’accès conditionnel qui vient en remplacement, car plus abouti et personnalisable que la MFA de base ou les paramètres de sécurité par défaut :

StratégieParamètres de sécurité par défautAccès conditionnelAuthentification multifacteur par utilisateur
Gestion
Ensemble standard de règles de sécurité pour garantir la sécurité de votre entreprise
Activé/désactivé en un clic
Inclus dans la gestion des licences Office 365
Modèles préconfigurés dans l’assistant Centre d’administration Microsoft 365
Flexibilité de la configuration
Fonctionnalité
Exempter les utilisateurs de la stratégie
Authentification par appel téléphonique ou SMS
S’authentifier par Microsoft Authenticator et jetons logiciels
Authentification par FIDO2, Windows Hello Entreprise et les jetons matériels
Bloque les protocoles d’authentification hérités
Les nouveaux employés sont automatiquement protégés
Déclencheurs MFA dynamiques en fonction des événements à risque
Stratégies d’authentification et d’autorisation
Configurable en fonction de l’emplacement et de l’état de l’appareil
Prise en charge du mode « Rapport seul »

Où peut-on se procurer des clefs FIDO2 ?

Microsoft met à disposition cette liste de fournisseur proposant justement des clefs FIDO2 :

FournisseurBiométrieUSBNFCBLECertifié FIPSContact
AuthenTrendyyyynhttps://authentrend.com/about-us/#pg-35-3
Cirightnnynnhttps://www.cyberonecard.com/
Ensurityyynnnhttps://www.ensurity.com/contact
Excelsecuyyyynhttps://www.excelsecu.com/productdetail/esecufido2secu.html
Feitianyyyyyhttps://shop.ftsafe.us/pages/microsoft
Fortinetnynnnhttps://www.fortinet.com/
Giesecke + Devrient (G+D)yyyynhttps://www.gi-de.com/en/identities/enterprise-security/hardware-based-authentication
GoTrustID Inc.nyyynhttps://www.gotrustid.com/idem-key
HIDnyynnhttps://www.hidglobal.com/contact-us
Hypersecunynnnhttps://www.hypersecu.com/hyperfido
IDmelon Technologies Inc.yyyynhttps://www.idmelon.com/#idmelon
Kensingtonyynnnhttps://www.kensington.com/solutions/product-category/why-biometrics/
KONA Iynyynhttps://konai.com/business/security/fido
NeoWavenyynnhttps://neowave.fr/en/products/fido-range/
Nymiynynnhttps://www.nymi.com/nymi-band
Octatcoyynnnhttps://octatco.com/
OneSpan Inc.nynynhttps://www.onespan.com/products/fido
Swissbitnyynnhttps://www.swissbit.com/en/products/ishield-fido2/
Thales Groupnyynyhttps://cpl.thalesgroup.com/access-management/authenticators/fido-devices
Thetisyyyynhttps://thetis.io/collections/fido2
Token2 Switzerlandyyynnhttps://www.token2.swiss/shop/product/token2-t2f2-alu-fido2-u2f-and-totp-security-key
Solutions TrustKeyyynnnhttps://www.trustkeysolutions.com/security-keys/
VinCSSnynnnhttps://passwordless.vincss.net
Yubicoyyynyhttps://www.yubico.com/solutions/passwordless/

Pour effectuer mes tests sur mon environnement Azure, j’ai décidé d’acheter deux clefs USB-A sous forme de pack auprès de Token2 Switzerland, au prix de 23€, frais de port compris :

Comment procède-t-on pour intégrer FIDO2 à Azure Virtual Desktop ?

Le processus d’installation est très simple, il vous faudra néanmoins quelques prérequis pour arriver à une intégration complète. Dans ce tutoriel, nous allons mettre en place une clef FIDO2 pour un utilisateur et créer deux polices d’accès conditionnel dédiées à AVD :

Etape 0 – Rappel des prérequis :

Les prérequis suivants sont nécessaires pour réaliser cette démonstration avec AVD :

  • Un poste sous Windows 10 (1903) ou supérieur
  • Un tenant Microsoft
  • Une souscription Azure valide
  • Un environnement AVD déployé (je vous conseille de suivre ce tutoriel)
  • Une licence Azure AD Premium Plan 1 ou Plan 2

Si votre tenant ne dispose d’aucune licence Azure AD Premium, vous pouvez activer une licence Azure AD Premium Plan 2 en version d’essai directement depuis le portail Azure AD :

Une fois la version d’essai activée, pensez à affecter une licence Azure AD Premium Plan 2 à un utilisateur votre tenant.

Etape I – Configuration du code PIN :

Azure AD exige que les clés de sécurité soient protégées par un code PIN. Insérer votre clef FIDO2 dans un port USB et allez dans les paramètres de votre poste pour le définir :

Cliquez ici pour configurer la clef :

Touchez la zone prévue à cet effet pour continuer :

Définissez un code PIN et confirmez-le :

Etape II – Activation de FIDO2 sur Azure AD :

Sur le portail d’Azure AD, consulter les paramètres de Sécurité via le menu suivant :

Cliquez sur Méthodes d’authentification :

Cliquez sur la ligne FIDO2 :

Activez la fonctionnalité FIDO2, puis cliquez sur Configurer :

Sauvegardez-là avec les options de base :

Quelques minutes sont parfois nécessaire pour continuer sur la configuration FIDO2 au niveau de l’utilisateur. Ne vous inquiétez pas si les écrans suivants ne sont pas encore identiques au tutoriel.

Etape III – Enrôlement d’une clef FIDO2 sur un compte Azure AD :

Comme dit précédemment, la clef FIDO2 n’embarque aucune information personnelle sur les comptes associés à celle-ci. Vous pouvez donc sans souci utiliser la même clef pour plusieurs comptes Azure AD.

Dans mon cas, j’ai créé un nouvel utilisateur pour retester un enrôlement complet.

Rendez-vous sur la page myaccount de Microsoft avec votre utilisateur de test, puis cliquez les Informations de sécurité :

Cliquez ici pour ajouter la première clef FIDO2 :

Dans mon cas, Azure m’avertit que mon utilisateur de test ne dispose d’aucune autre méthode MFA, j’en profite donc pour mettre en place le SMS comme seconde méthode :

Une fois terminé, recommencez le processus pour arriver sur cet écran :

Azure AD entame une communication avec la clef FIDO2 :

Plusieurs messages d’information de Windows 10 vont se succéder :

Renseignez le PIN de votre clef FIDO2, puis continuez :

Touchez la zone prévue à cet effet pour terminer :

Il ne vous reste plus qu’à donner un nom à cette première clef FIDO2 :

Comme il est fortement conseillé, recommencer la même opération avec une seconde clef FIDO2, utilisable en cas de secours :

Etape IV – Test de FIDO2 :

Avant d’aller plus loin dans l’intégration avec Azure Virtual Desktop, je vous conseille de tester l’authentification utilisateur avec sa clef FIDO2. Pour cela ouvrez le navigateur de votre choix en mode privé et allez sur la page web office.com.

Cliquez-ici pour vous authentifier :

Au lieu de saisir le mot de passe du compte de test, cliquez comme ceci :

Renseignez le code PIN de votre clef FIDO2 :

Touchez la zone prévue à cet effet pour confirmer l’authentification :

Cliquez enfin sur Non :

Et vous voilà correctement authentifié sur le portail Office365 ????

Etape V – Création d’une méthode d’authentification renforcée :

En faisant différents tests, je me suis rendu compte que l’on pouvait intégrer le mécanisme FIDO2 à plusieurs niveaux d’AVD.

Pour rappel, je suis partie d’un environnement Azure Virtual Desktop existant et équivalent à ce qui est détaillé dans cet article : Simplifiez l’authentification des utilisateurs d’AVD joint Azure AD avec Single Sign-on – Jean-Loup & Azure (jlou.eu).

Encore en préversion à ce jour, connectez-vous au portail d’Azure et rendez-vous dans le service Azure AD avec un compte administrateur adéquat :

Ouvrez le menu Sécurité :

Cliquez sur Méthodes d’authentification :

Cliquez sur Méthodes d’authentification renforcées pour en ajouter une nouvelle :

Terminez la création de celle-ci :

Etape VI – Test de l’accès conditionnel au premier niveau :

Toujours dans votre portail Azure AD, retournez dans la section Sécurité puis cliquez sur Accès conditionnel :

Créez votre nouvelle Police :

Saisissez un nom à votre police et sélectionnez votre utilisateur de test :

Ajoutez l’application Azure Virtual Desktop :

Terminez la configuration en autorisant l’accès sous réserve de satisfaire votre nouvelle méthode d’authentification renforcée :

Attendez quelques minutes et ouvrez votre client Windows d’Azure Virtual Desktop pour tester votre première police d’accès conditionnel :

Renseignez le compte Azure de votre utilisateur de test et constatez la présence de ce message :

Touchez la zone prévue à cet effet pour terminer l’authentification :

Félicitations ! Votre accès AVD est bien protégé par la clef FIDO2 ????.

Etape VII – Test de l’accès conditionnel au second niveau :

En parcourant les fonctionnalités de l’accès conditionnel d’Azure AD, j’ai remarqué une seconde application du Cloud Azure très intéressante :

J’ai donc créé une seconde règle d’accès conditionnel, avec les mêmes autres paramètres pour intégrer un mécanisme FIDO2 au moment de l’ouverture de session Windows d’AVD :

Sur votre application Azure Virtual Desktop, cliquez sur l’icône pour ouvrir une session AVD :

Attendez que le processus continue :

Choisissez le compte autorisé à AVD et disposant d’une clef FIDO2 :

Renseignez le code PIN de votre clef FIDO2 :

Touchez la zone prévue à cet effet pour confirmer l’authentification :

Attendez que la session AVD s’ouvre :

Conclusion

Cette combinaison AVD + AD + FIDO2 fut très intéressante à tester, et assez simple à mettre en place. Cette flexibilité nous montre aussi l’infinité de scénarios possibles pour augmenter la sécurité des utilisateurs sans pour autant rendre le quotidien lourd ou invivable.

Enfin, profitez-en pour sécuriser un peu plus vos comptes à vous ????

Privatisez l’accès de votre AVD

Azure Virtual Desktop continue encore d’évoluer et s’associe maintenant avec un autre service réseau du cloud Microsoft : Azure Private Link. En ce début du mois de novembre, Microsoft vient de l’ouvrir en préversion publique pour tester cette fonctionnalité. L’idée est donc de sécuriser d’avantage, par une restriction encore plus poussée, l’accès au service Azure Virtual Desktop.

Pourquoi restreindre un service Cloud ?

Pour répondre à une demande provenant de certaines entreprises. Beaucoup d’entre-elles ont même des exigences légales et ne souhaitent donc pas faire passer un flux réseau à travers internet, quand bien même il s’agirait de communications en HTTPS.

Il paraissait donc important que Microsoft propose ce type de fonctionnalité pour permettre à au service à Azure Virtual Desktop d’être 100% en dehors du web.

Pour parvenir à la mise en place de cette fonctionnalité, Microsoft met déjà à disposition plusieurs documentations, disponibles uniquement en anglais pour l’instant :

Qu’est-ce qu’Azure Private Link ?

En deux mot, Azure Private Link vous permet d’accéder aux services Azure PaaS (par exemple du stockage Azure, compte le compte de stockage ou encore une base de données SQL) depuis votre réseau virtuel :

Voici une vidéo qui aborde le sujet dans son entièreté :

Comment va fonctionner Azure Virtual Desktop avec Private Link ?

Comme pour les autres services proposant cette association, le trafic entre le réseau virtuel et Azure Virtual Desktop transitera par le réseau « dorsal » de Microsoft, ce qui signifie que vous n’aurez plus besoin d’exposer votre AVD à l’Internet.

En termes de sécurité, transiter son trafic dans le réseau « connu » et sécurisé de Microsoft renforcera toujours un peu plus la protection de vos données.

A quel moment intervient le Private Link dans le chemin de connexion entre l’utilisateur et AVD ?

Il peut intervenir à plusieurs niveaux. En effet, la connexion est décomposée en différentes étapes et avec plusieurs composants. Il est alors possible de choisir quelles connexions ont le droit ou non de transiter par internet.

C’est d’ailleurs pour cela que plusieurs options sont présentes dans la configuration réseau d’AVD :

  • La première option se charge d’autoriser ou non l’accès au service AVD des utilisateurs depuis internet. Autrement la partie frontale de la connexion AVD.
  • La seconde option se charge d’autoriser ou non l’accès au service AVD des machines virtuelles AVD depuis internet. Autrement la partie arrière-plan de la connexion AVD.

Peut-on utiliser à la fois les fonctionnalités Private Link et RDP Shortpath ?

Durant cette phase de préversion, cela n’est pas possible. Pour rappel RDP Shortpath est une méthode habile d’Azure Virtual Desktop qui établit un transport direct basé sur le protocole UDP entre le client Remote Desktop et l’hôte de session. Tout y est expliqué ici.

Etape 0 – Rappel des prérequis

Pour arriver à la démonstration de l’association entre Azure Virtual Desktop et Private Link, je dispose d’un environnement comprenant des composants déjà en place :

  • Poste Windows 10 avec Azure VPN
  • Environnement AVD avec jointure Azure AD

On retrouve ainsi mon premier réseau virtuel comprenant :

  • La machine virtuelle faisant office de poste utilisateur distant sous Windows 10
  • Le service Azure Bastion pour m’y connecter plus facilement

J’ai également déployé un second réseau virtuel. Celui-ci comprend

  • Mon environnement Azure Virtual Desktop
  • Une passerelle VPN pour assurer la connection entre le poste Windows 10 et AVD

La connexion VPN Point à Site est bien fonctionnelle :

L’accès direct à une des machines virtuelles AVD répond bien.

Comme vous pouvez le voir sur la configuration d’Azure Virtual Desktop, une nouvelle section dédiée au réseau a fait son apparition :

Avant d’aller plus loin, il est donc nécessaire d’activer la fonctionnalité, encore en préversion à l’heure où ces lignes sont écrites.

Etape I – Activation de la fonction de préversion d’Azure Private Link

Comme beaucoup de fonctionnalités encore en préversion, il est nécessaire de l’activer depuis le portail Azure. Pour cela, effectuer l’opération suivante via ce lien :

N’oubliez pas de sélectionner la bonne souscription Azure.

Une fois enregistrée, attendez environ 15 minutes.

Retournez sur la section réseau de votre Azure Virtual Desktop pour constater le déblocage des fonctionnalités réseaux :

Dans cette configuration par défaut, avec les 2 cases de cochées, la connexion réseau transite via internet dans sa totalité :

  • Entre le client et le service Azure Virtual Desktop
  • Entre le service Azure Virtual Desktop et les machines virtuelles AVD

Un test, avec le VPN désactivé, montre que la connexion se fait toujours via internet :

Etape II – Restreindre la communication entre le service AVD et le pool d’hôtes au réseau virtuel Azure

La première étape consiste donc à restreindre la communication entre le service Azure Virtual Desktop et les machines virtuelles AVD au réseau virtuel. Pour cela décochez la case suivante et sauvegardez :

Un nouvel essai de connexion utilisateur vous montre le blocage immédiat de cette méthode en passant par internet :

Comme dit plus haut, l’utilisateur n’en est pas responsable : Le service Azure Virtual Desktop est incapable de communique avec la machine virtuelle AVD.

Pour arriver rétablir l’accès au service AVD, nous avons besoin de créer un premier private endpoint en cliquant sur le second onglet de la section réseau :

Pour réactiver les connexions, vous devrez créer un private endpoint pour chaque pool d’hôtes AVD que vous souhaitez autoriser.

Donnez-lui un nom, puis passez à l’onglet suivant :

Laissez cet onglet comme ceci avec le type connexion et passez sur le suivant.

Pour information, il existe différents types de sous-resource cible, ils auront une importance et seront utilisés par la suite :

Type de resourceType de sous-resourceQuantité
Microsoft.DesktopVirtualization/workspacesglobalUn pour tous les déploiements Azure Virtual Desktop
Microsoft.DesktopVirtualization/workspacesfeedUn par workspace
Microsoft.DesktopVirtualization/hostpoolsconnectionUn par pool d’hôtes

Renseignez le réseau / sous réseau de votre environnement Azure Virtual Desktop :

Pour votre information, plusieurs adresses IP privées seront alors allouées pour les services suivants :

Sur l’onglet suivant, une zone DNS privée va être créé pour le private endpoint :

Lancez la création puis attendez :

Une fois créé, la carte réseau du private endpoint nouvellement créé vous montre que chaque service dispose bien d’une adresse IP dédiée :

Important : Pour les gros environnement AVD, prévoir un second sous-réseau pour éviter un souci d’adressage.

Un redémarrage de machines virtuelles AVD plus tard : la connexion AVD depuis le poste client refonctionne sans souci :

Veuillez noter que la copie d’écran ci-dessus montre bien que le VPN d’Azure est toujours déconnecté. Cela montre bien que nous n’avons pas encore influencé la partie frontale du service AVD.

Pour bien comprendre ce qui s’est passé, un test intéressant est de

  • Créer un groupe de sécurité réseau (NSG)
  • Y ajouter une restriction d’accès au service publique d’Azure Virtual Desktop
  • L’associer au sous-réseau contenant les machines virtuelles AVD

Ce test créé une contrainte qui n’empêche pas notre test de fonctionner, car la connexion entre le service Azure Virtual Desktop et les machines AVD transite par le private endpoint nouvellement créé.

J’ai également fait un autre test de retirer le private endpoint. Les machines virtuelles AVD apparaissent alors bien comme étant injoignables pour le service Azure Virtual Desktop :

Maintenant, la seconde étape est de restreindre également l’accès au service Azure Virtual pour les postes connectés uniquement à internet.

Etape IIIa – Restreindre la communication entre le service AVD et les utilisateurs au réseau virtuel

La première étape consiste donc à restreindre la communication entre le service AVD et les utilisateurs via internet. Pour cela, décochez la case suivante et sauvegardez :

Un nouvel essai de connexion à AVD nous montre le blocage immédiat de cette méthode en passant par internet :

Un rafraichissement de l’espace de travail AVD montre maintenant un refus d’affichage de celui-ci :

Pour terminer la configuration, nous avons besoin de créer deux autres private endpoints.

Pour cela, allez sur l’espace de travail AVD, allez dans la section réseau, décochez la case et sauvegardez :

Comme précédemment, commencez par créer un private endpoint comme ceci :

Nommez-le différemment du premier private endpoint créé durant l’étape précédente :

Choisissez cette fois-ci la sous-resource cible de type Feed :

Renseignez le réseau / sous réseau où votre environnement Azure Virtual Desktop :

Là encore, des adresses IP privées seront allouées pour les services suivants :

Sur l’onglet suivant, la première zone DNS privée va être réutilisée pour le second private endpoint, rattaché à votre espace de travail :

Lancez la création puis attendez :

Une fois créé, retournez sur la page d’Azure Virtual Desktop pour créer le troisième private endpoint de type Global.

Etape IIIb – Restreindre la communication entre le service AVD et les utilisateurs au réseau virtuel

Microsoft conseille d’isoler ce private endpoint sur un espace de travail dédié au réseau. En effet, ce private endpoint unique de type Global pourrait service servir à tous les réseaux virtuels appairés.

Pour cela, créez un nouvel espace de travail AVD :

Nommez-le et lancez sa création :

Une fois créé, retournez-y, décochez là encore l’option réseau, puis sauvegardez.

Créez ici le troisième private endpoint et remplissez le premier onglet comme les 2 précédentes fois :

Choisissez le type de sous-resource cible Global :

Choisissez un réseau en relation directe avec votre environnement AVD :

Pour information, une adresse IP privée sera là-encore allouée pour le service suivant :

Sur l’onglet suivant, la première zone DNS privée va être réutilisée pour le troisième private endpoint, rattaché à ce nouvel espace de travail :

Lancez la création puis attendez :

Etape IV : Configuration du réseau on-premise

Pour que la connexion restreinte à Azure Virtual Desktop fonctionne bien, il est nécessaire d’apporter les enregistrements DNS créés précédemment sur le réseau on-premise.

Comme mon réseau on-premise est virtuellement créé sur Azure, j’ai choisi de créer une seconde zone DNS privée avec le même nom et de la rattacher à mon réseau on-premise :

Reprenez tous les enregistrements présents dans la zone DNS créée par les private endpoints.

Si comme moi votre réseau on-premise est dans Azure, associez cette zone DNS privée à celui-ci.

Etape V : Test de la connexion via Azure VPN Point à Site

Sur le poste on-premise de test, effectuez un premier test de connexion à l’URL d’Azure Virtual Desktop tout en ayant la connexion VPN de stoppée :

aka.ms/wvdarmweb

Constatez avant tout que la page n’est dorénavant plus joignable :

Démarrez votre connexion VPN grâce au client Azure VPN :

Recharger la page web du service Azure Virtual Desktop et renseignez vos identifiants de l’utilisateur de test :

Cliquez sur l’icône de bureau à distance :

Renseignez une seconde fois son mot de passe :

Et vus voilà dans votre session AVD !

Un test de déconnexion de la connexion VPN affectera immédiatement la session utilisateur d’AVD :

Réactiver la connexion VPN pour retrouver la session AVD.

Etape VI : Résumé des ressources Azure créées

Afin d’apporter plus de clarté à toutes ces opérations de déploiement, voici un récapitulatif du travail effectué dans cet article sur mon environnement Azure :

  • 3 private endpoints :
  • 3 cartes réseaux :
  • 2 zones DNS privées :
  • 1 second espace de travail AVD :

Etape VI : Aide à la résolution

Si l’installation s’est déroulée sans accro, mais que vous n’arrivez toujours pas à vous reconnecter à votre environnement Azure Virtual Desktop, voici quelques pistes qui peuvent vous aider :

Absence du premier private endpoint sur le pool d’hôtes AVD.
Connexion VPN non démarrée.
Authentification correcte, mais absence d’enregistrements DNS www, rdweb et client sur le réseau on-premise.
Authentification correcte, mais absence d’enregistrements DNS .rdweb sur le réseau on-premise.
Authentification correcte, mais absence d’enregistrements DNS gateway sur le réseau on-premise.

Conclusion

Par cette nouvelle fonctionnalité, Microsoft apporte encore plus de liberté dans la manière d’utiliser son environnement AVD, avec toujours plus d’exigences de sécurité. La possibilité de restreindre le service AVD à différents types de connexions sécurisées, comme les VPNs ou encore Azure ExpressRoute était attendue depuis longtemps.

Comme toujours, Dean de l’Azure Academy a préparé une vidéo très explicative de la mise en route ????

Stockez vos données sur un service PaaS

Azure propose depuis longtemps plusieurs méthodes efficaces pour le stockage de donnée dans le Cloud. Disponibles sous différentes formes, le compte de stockage est une méthode PaaS (Platform As A Service) simple, rapide à déployer et pouvant correspondre à de nombreux scénarios d’architecture.

Il y a tant de choses à dire sur le compte de stockage d’Azure, qu’un seul article ne suffira pas. Dans cet article, nous allons donc parcourir les principales fonctionnalités du compte de stockage à travers différentes questions que l’on peut naturellement se poser.

Quels sont les principaux bénéfices du compte de stockage Azure ?

Il est facile de résumer les principaux avantages à utiliser un compte de stockage Azure :

  • Résilient : comme beaucoup de services Azure, celui-ci affiche une haute disponibilité grâce à différents types de redondance (LRS/ZRS/GRS). De plus, les outils de sauvegarde natifs d’Azure s’y applique également.
  • Sécurisé : toute donnée sur un compte de stockage Azure est systématiquement chiffrée. Ce chiffrage est aussi gérable avec une clef CMK.
  • Adaptatif : la flexibilité est une composante majeure du compte de stockage Azure grâce à une tarification ajustable selon la fréquence et les besoins en taille et en performances.
  • Accessible : les données stockées sont accessibles depuis n’importe où dans le monde via le protocole HTTPS. Microsoft fournit également des bibliothèques clientes dans de nombreux langages, notamment .NET, Java, Node.js, Python, PHP, Ruby, Go.

Quels services de stockage sont alors possibles sur un Azure Storage Account ?

Un compte de stockage Azure propose 4 différents services de stockage, selon la nature même des objets à stocker :

  • Objets blob : stockage objet hautement scalable pour les données texte ou binaires.
  • Partage de fichier : partage de fichiers classique géré via le protocole SMB.
  • Files d’attente : outil de messagerie entre différents composants d’application.
  • Tables : magasin NoSQL pour le stockage sans schéma de données structurées.

Quels types de compte de stockage Azure sont disponibles ?

Plusieurs types de comptes de stockage sont proposés par Azure. Il faut en retenir que l’utilisation de tel ou tel type de compte de stockage dépend de la performance désirée et du mode de réplication :

TypeServices disponiblesOptions de redondance disponibles
Usage général v2 StandardBlob, File d’attente, Table et Azure FilesLRS
ZRS
GRS
RA-GRS
GZRS
RA-GZRS
Objets bloc blob PremiumStockage BlobLRS
ZRS
Partage de fichiers PremiumAzure FilesLRS
ZRS
Objets page blob PremiumObjets page blob de pages LRS
Les comptes de stockage à hautes performances proposent une réplication limitée.

Comment la réplication fonctionne sous Azure ?

Les centres de données Azure sont maintenant présents en grand nombre à travers le monde. Il existe donc plus de 60 régions Azure, elles-mêmes regroupées en géographie :

Dans une région Azure, souvent composé de plusieurs centres, aussi appelés zone de disponibilité, sont interconnectés via un réseau haute performance et apporte une protection supplémentaire contre les défaillances matérielles, les pannes de réseau, d’électricité ou les catastrophes naturelles.

Comme vu précédemment, les options de réplication disponibles vont dépendre du type de compte de stockage sélectionné :

  • Donnée sur une région Azure :
    • Stockage localement redondant (LRS) : 3 copies synchrones dans un seul centre de données d’une seule région.
    • Stockage redondant interzone (ZRS) : 3 copies synchrones dans les 3 centres de données d’une seule région.
  • Donnée sur deux régions Azure (région paire de la première)
    • Stockage géo-redondant (GRS) : 3 copies synchrones dans un seul centre de données d’une seule région + 3 copies asynchrones dans un seul centre de données de la région paire de la première.
    • Stockage géo-redondant avec accès en lecture (RA-GRS) : 3 copies synchrones dans un seul centre de données d’une seule région + 3 copies asynchrones dans un seul centre de données de la région paire avec accès en lecture.
    • Stockage géo-redondant interzone (GZRS) : 3 copies synchrones dans 3 centres de données d’une seule région + 3 copies asynchrones dans un seul centre de données de la région paire.
    • Stockage géo-redondant interzone avec accès en lecture (RA-GZRS) : 3 copies synchrones dans les 3 centres de données d’une seule région + 3 copies asynchrones dans un seul centre de données de la région paire avec accès en lecture.

Ces options de réplication ont évidemment un impact conséquent sur les prix, comme le montre ce lien vers le calculateur Azure :

Comment accède-t-on à différents objets sur le compte de stockage ?

Un stockage de données a besoin au minium d’un point réseau pour remplir son rôle dans l’architecture. Par défaut, tout compte de stockage dispose d’URL uniques. Celles-ci reprennent le nom du compte de stockage suivi du service de stockage employé :

  • Service de conteneurs : https://mystorageaccount.blob.core.windows.net
  • Service de table : https://mystorageaccount.table.core.windows.net
  • Service de file d’attente : https://mystorageaccount.queue.core.windows.net
  • Partage de fichiers : https://mystorageaccount.file.core.windows.net

Par exemple, cet accès public met à disposition de la donnée sans authentification, comme par exemple pour un conteneur blob public :

Une URL ne signifie pas que l’accès est non contrôlé, comme le montre la création d’un second conteneur :

L’accès est bien refusé car une authentification est nécessaire.

L’accès au contenu devra donc passer par l’utilisation d’une des 2 clefs du compte de stockage, pour générer une signature d’accès partagé (SAS). L’avantage de cette gestion est de mieux gérer les droits précis et la durée d’accès :

Exemple d’URL avec signature SAS :

https://jlosto.blob.core.windows.net/pictures-secure/Geneva-at-night.jpg?sp=r&st=2022-11-09T12:33:20Z&se=2022-11-09T20:33:20Z&spr=https&sv=2021-06-08&sr=b&sig=AIWmVLKklAgOPoCYBvd%2BOl5fr5K0mZe3xAowIOXcq7

Les choses sont sensiblement proches pour un partage de fichiers. Dans ce service, l’authentification est possible de 2 manières :

  • Active Directory
  • Clef du compte de stockage

La première méthode demande au préalable de joindre le compte de stockage à un domaine Active Directory. Un précédent article parlant de FSLogix, au sein d’un environnement Azure Virtual Desktop, en fait référence ici.

La seconde méthode repose assez sur l’utilisation d’une des 2 clefs du compte de stockage. C’est un risque d’octroyer plus que de droits que nécessaires, car une clef donne un accès complet au compte de stockage.

Important : Microsoft le précise, vos clés d’accès de compte de stockage sont similaires au mot de passe racine pour votre compte de stockage. Veillez toujours à protéger vos clés d’accès :

  • Utilisez le service Azure Key Vault pour gérer et effectuer la rotation de vos clés en toute sécurité.
  • Évitez de distribuer des clés d’accès à d’autres utilisateurs, de les coder en dur ou de les enregistrer en texte brut dans un emplacement accessible à d’autres personnes.
  • Effectuez une rotation de vos clés si vous pensez qu’elles ont pu être compromises.

Exemple de montage du partage de fichier via le script proposé sur le portail et utilisant une des 2 clefs du compte de stockage :

Peut-on restreindre les IP publiques pouvant s’y connecter ?

Oui c’est tout à fait possible. L’onglet Réseau du compte de stockage apporte ce type de restriction, basée sur les ip publiques :

Même en possession de la clef du compte de stockage, un autre poste ayant une IP publique non référencée ne pourra s’y connecter :

Attention, la mise en place de cette restriction bloquera automatiquement l’accès aux ressources situées de la même région Azure :

Les services déployés dans la même région que le compte de stockage utilisent des adresses IP Azure privées. Vous ne pouvez donc pas restreindre l’accès à des services Azure spécifiques en fonction de leur plage d’adresses IP sortantes publiques.

Microsoft Doc

Pour les ressources Azure situées dans la même région que le compte de stockage, il est alors nécessaire de rajouter le réseau virtuel Azure pour retrouver un accès public fonctionnel :

Cette action ajoute un point de terminaison du service sur le sous-réseau rajouté sur la configuration :

Peut-on fermer l’accès public (URL) et ne transiter que via un adressage réseau privé ?

Il parfaitement possible de fermer l’accès public et d’intégrer le compte de stockage sur un réseau virtuel privé Azure.

Un point de terminaison privé est une interface réseau qui utilise une adresse IP privée de votre réseau virtuel. Cette interface réseau vous connecte de manière privée et sécurisée à un service fonctionnant avec Azure Private Link. En activant un point de terminaison privé, vous intégrez le service à votre réseau virtuel.

Ayant associé un service DNS privé à mon réseau virtuel, je retrouve bien un enregistrement dns pointant vers mon compte de stockage :

L’accès est bien à nouveau fonctionnel depuis le réseau virtual Azure :

La mise en place du point de terminaison privé permet alors la désactivation complète de l’accès public du compte de stockage :

La fermeture de l’accès public a aussi pour effet de restreindre l’accès aux données du compte de stockage depuis le portail Azure :

Existe-t-il un soft-delete pour les données ?

Oui et non ????. Les services de stockages principalement utilisés sont le blob et le partage de fichier. Le soft-delete consiste à ne pas vraiment supprimer définitivement la donnée lors de sa suppression par un utilisateur.

Le stockage blob propose deux soft-deletes : Un pour le container tout entier et un autre pour les blobs eux-mêmes :

Le partage de fichier ne propose l’option que pour la suppression du partage de fichiers, pas son contenu individuel :

Comment sauvegarder facilement les données ?

Deux services du compte de stockage se sauvegardent très facilement à travers des services Azure.

Le stockage blob nécessite la mise en place d’un coffre de sauvegarde, en veillant à le placer dans la même région Azure que le compte de stockage à sauvegarder :

Une fois le coffre de sauvegarde créé, mettez en place votre sauvegarde :

Définissez votre police de sauvegarde selon vos besoins de rétention :

Ajoutez le compte de sauvegarde blob et attendez quelques minutes pour confirmer sa validation :

Le coffre de sauvegarde a besoin du rôle pour pouvoir gérer la sauvegarde blob, cliquez comme ceci pour ajouter le rôle attendu :

Ce rôle est bien implémenté sur le compte de stockage :

Attendez quelques minutes pour constater la validation :

Déclenchez la configuration de sauvegarde, il est à noter que nous n’avons jamais pu choisir le ou les conteneurs du compte de stockage à sauvegarder :

Un contrôle dans le coffre de sauvegarde nous montre bien la bonne prise en compte de la configuration :

Pour le partage de fichier, il est nécessaire de passer par la création d’un coffre de récupération Azure :

Une fois le coffre de récupération créé, mettez en place votre sauvegarde :

Ajoutez le compte de stockage et le partage de fichier à sauvegarder, définissez la police et activez la sauvegarde :

Contrôler le paramétrage dans le coffre de récupération :

Comment fonctionne la synchronisation entre différents comptes de stockage ?

Lorsque la réplication d’objets blob est activée, les blobs sont copiés de manière asynchrone depuis un compte de stockage source vers un compte de stockage de destination.

Créez une règle de réplication sur le premier compte de stockage (source) :

Vérifiez le contre paramétrage sur le compte de stockage (destination) :

Comme la réplication est asynchrone, il faut attendre plusieurs minutes pour constater l’apparition des blobs sur le second compte de stockage :

Peut-on réduire les coûts blob ?

La gestion blob via un cycle de vie utilise des règles pour déplacer automatiquement les blobs vers des niveaux plus froids ou pour les supprimer. Cette stratégie est intéressante car les coûts varient selon la chaleur du stockage :

Cette variation impacte également le prix des transactions blob :

Par exemple, la création de règle en escalier est logique pour refroidir d’anciennes sauvegardes :

Si vous créez plusieurs règles, les actions associées doivent être mises en œuvre dans l’ordre des niveaux (du stockage chaud au stockage froid, puis l’archivage, puis la suppression).

Conclusion

On pourrait continuer encore longtemps sur toutes les autres fonctionnalités proposées par le compte de stockage Azure. Je vous conseille les vidéos suivantes pour en apprendre un peu plus ????????

Changez la résidence de vos données 365

Bonne nouvelle en ce début du mois de novembre, Microsoft a réouvert le processus gratuit de migration de données 365 pour les tenants existants. De quoi parle-t-on exactement ? En quelques mots, ces dernières années, Microsoft a ouvert de plus en plus de centres de données, et cela allonge donc automatiquement la liste des pays. Cet avantage permet aux entreprises de choisir dans quel pays les données 365 seront stockées.

Qu’est-ce que la résidence des données 365 ?

Avant toute chose, Microsoft liste leurs termes et définitions en relation avec la résidence de données 365 juste ici.

Important : les services 365 s’exécutent sur l’ensemble des centres de données Microsoft. A ce titre, les données peuvent donc être stockées dans plusieurs centres de données dans le cadre de transit :

La résidence des données fait ici donc référence à l’emplacement géographique où les données 365 sont stockées au repos.

Pourquoi s’intéresser à la résidence des données 365 ?

La résidence des données est cruciale pour les gouvernements, les entreprises du secteur public, les organismes d’éducation ou encore les entreprises travaillant dans des secteurs réglementés. Cette exigence est alors indispensable afin d’accroître la protection des informations personnelles et/ou sensibles.

Quelle est la résidence des données 365 par défaut ?

Lorsqu’on créé un nouveau tenant, il vous est systématiquement demandé de spécifier un pays durant le processus de création.

Important : Une fois le tenant créé, la zone géographique par défaut ne peut plus être modifiée.

Pourquoi changer la résidence des données ?

De plus, de nombreux pays exigent de leurs entreprises afin qu’elles se conforment aux lois, aux réglementations ou aux normes de secteur qui régissent explicitement l’emplacement du stockage des données.

Changer la résidence des données 365 est alors utile pour se conformer à ces règles, mais offre une également proximité entre le stockage des données et les utilisateurs finaux.

Qu’est-ce que le programme de déplacement hérité Data Residency ?

Coïncidant avec le lancement du module complémentaire Microsoft 365 Advanced Data Residency, le programme de déplacement n’est plus proposé lors du lancement de nouvelles régions de centre de données locales. 

Microsoft Learn

Cette ouverture permettait donc de pouvoir migrer gratuitement les données de la région macro vers une région de centre de données locale qui correspond au pays d’inscription initial

Autrement dit, de l’Europe vers la Suisse, la France, …

Comment activait-on cette demande de migration ?

Les clients éligibles voyaient cette option dans leur Centre d’administration Microsoft 365. Cocher cette case permettra de demander que leurs données applicables soient déplacées vers leur nouvelle région de centre de données :

Quand est-ce que la migration allait être opérée ?

Comme le monde la copie d’écran du tenant ci-dessus, la migration du tenant pouvait prendre jusqu’à 24 mois, à partir de la date d’échéance de la demande. La bonne nouvelle est que Microsoft a réouvert ce service gratuit, et ce pour une dernière fois !

Pendant combien de temps je peux activer cette option ?

Le tableau ci-dessous affiche la liste des pays éligibles et les dates associées. Il faut donc cocher la case précédente avant la fin de la période du pays qui vous concerne :

Important : Il s’agit de la dernière fenêtre de migration gratuite possible !!! Après ces dates, ce service existera toujours, mais sera payant ????

Et si j’ai d’autres questions concernant la migration ?

Microsoft met à disposition une FAQ concernant ce service et peut déjà répondre à certaines de vos interrogations ????

Bonne migration !

Augmentez la résilience de votre AVD

De manière générale, la grande majorité des services proposés par les principaux hébergeurs Cloud s’accompagnent d’un niveau de service (SLA). Ce Service-level agreement est un point d’accord concernant la disponibilité d’un service entre les utilisateurs et l’hébergeur Cloud. Une architecture entière dispose elle aussi de sa propre SLA. La SLA de ce produit final combine alors toutes les SLAs de ses sous-produits dont elle dépend.

Dans cet article, nous allons parcourir ensemble quelques mécanismes de résilience disponibles sur Azure. Nous testerons aussi ces méthodes dans le cadre de déploiement d’environnement AVD via le portail Azure.

Qu’est-ce que la SLA selon Microsoft ?

Les Contrats de Niveau de Service (« Service-level agreements », SLA) décrivent les engagements de Microsoft en termes de temps de disponibilité et de connectivité. Les SLA pour les différents services Azure sont énumérés ci-dessous.

SLA selon Microsoft

Azure élabore différentes SLAs pour chaque service qu’ils proposent. Certains services encore en préversion, destinés à du développement ou même gratuits peuvent être dépourvus de SLA. Tout naturellement, une SLA plus élevée apporte une meilleure disponibilité au service attendu.

Prenons en exemple la SLA des machines virtuelles créées sur Azure. Cette SLA dépend par exemple des performances des disques rattachés à la machine virtuelle :

Le choix de disques plus performant est une chose facile à comprendre et à mettre en place. Elle est donc la une première démarche à effectuer pour renforcer la résilience.

Quelle SLA dans le cadre d’un Azure Virtual Desktop ?

Azure Virtual Desktop s’appuie lui aussi sur des machines virtuelles Azure. Microsoft propose le un tableau comparant les cinq types de disques disponibles pour vous aider à choisir celui que vous allez utiliser selon votre scénario d’utilisation :

Disque UltraSSD Premium v2SSD PremiumSSD StandardHDD Standard
Type de disqueSSDSSDSSDSSDHDD
ScénarioCharges de travail gourmandes en E/S, telles que le système SAP HANA, les bases de données de niveau supérieur (par exemple, SQL et Oracle), et autres charges de travail très lourdes en transactions.Charges de travail de production et sensibles aux performances qui nécessitent systématiquement une latence faible, des IOPS et un débit élevéCharges de travail de production et sensibles aux performancesServeurs web, applications d’entreprise peu utilisées et Dev/TestSauvegarde, non critique, accès peu fréquent

Microsoft vous recommande donc de créer vos machines virtuelles AVD avec des disques Premium SSD, et cela pour trois raisons :

  • SLA de haut niveau, 99.9 %, indispensable pour environnement de production.
  • Performances élevées, bande passante et IOPS satisfaisantes.
  • Rapport qualité / prix en intégrant les coûts transactionnels dans son prix mensuel fixe.

Dans le cadre d’un pool de machines virtuelles AVD avec des disques Premium SSD, la SLA est alors à 99.9 % pour chacune d’elle.

Un autre paramètre rentre en ligne de compte pour renforcer la SLA de machines virtuelles : Nombre de machines virtuelles jouant un rôle identique :

Qu’est-ce qu’un Groupe à haute disponibilité ?

Un Groupe à haute disponibilité est un regroupement logique d’au moins deux machines virtuelles, de manière à fournir une application hautement disponible et à répondre aux exigences du niveau de 99,95 % inscrit dans les contrats de niveau de service Azure. Le groupe à haute disponibilité proprement dit ne vous coûte rien ; vous payez uniquement pour chaque instance de machine virtuelle que vous créez.

Microsoft Learn

Deux notions importantes sont alors configurables grâce à cette fonctionnalité d’Azure :

  • Domaine de mise à jour : regroupe des machines virtuelles pouvant être mises à jour et donc potentiellement redémarrées en même temps. Le redémarrage des domaines de mise à jour effectue un redémarrage que sur un seul un seul domaine à la fois. (Max 20 domaines de mise à jour par Groupe à haute disponibilité)
  • Domaine d’erreur : regroupe des machines virtuelles partageant une source d’alimentation et réseau en commune. Cela a pour effet de limiter l’effet des défaillances des équipements physiques, des pannes du serveur et des coupures d’électricité. (Max 3 domaines d’erreur par Groupe à haute disponibilité)

Autrement dit, Azure vous permet de positionner gratuitement vos machines virtuelles dans un Groupe à haute disponibilité, de telle sorte que si l’une d’entre-elles rencontre des difficultés ou une mise à jour Azure, une continuité de service de votre application est assurée via la disponibilité garantie des autres machines virtuelles.

Dans le cas d’un environnement Azure Virtual Desktop, certains services critiques peuvent alors être répartis sur plusieurs Groupes de disponibilité. Par exemple :

  • Groupe de disponibilité 1 : Les machines virtuelles dédiées au pool d’hôtes AVD
  • Groupe de disponibilité 2 : Les machines virtuelles dédiées au domaine AD

Qu’est-ce que les Zones de disponibilité ?

Un schéma est souvent plus clair que de longues explications. Voici un empilement hiérarchique du Cloud Microsoft. Chaque service Azure est défini par toutes ces strates ici présentes.

Les géographies d’Azure n’ont pas d’impact direct sur les architectures déployées dans le Cloud. Il faut juste garder en tête qu’une géographie Azure regroupe plusieurs régions Azure.

Le niveau le plus important à retenir est bien la Région Azure. Le Cloud de Microsoft est réparti sur environ une soixantaine de régions Azure. La plupart de ces régions Azure forment une paire de 2 régions. Cette liaison forte apporte des services spécifiques, comme le but d’accroitre les capacités de de reprise après sinistre.

Enfin, de plus en plus de régions Azure disposent de plusieurs Zones de disponibilité :

Les Zones de disponibilité Azure sont des emplacements physiquement séparés au sein de région Azure, qui sont tolérants aux défaillances de centre de données en raison de l’infrastructure redondante et de l’isolation logique des services Azure.

Microsoft Learn

L’intérêt de disposer de lieux géographiques séparés de plusieurs kilomètres, voir dizaines de kilomètres, est d’apporter une meilleure résilience que celle générée via les Groupes à haute disponibilité, toujours présent dans un seul site physique, pour faire face à des sinistres de grande envergure.

A titre d’information, les zones de disponibilité sont disponibles dans la région Azure Suisse Nord depuis mai 2022.

Afin de garantir un haut niveau de performance, Microsoft signale que l’impact sur la latence d’une architecture Azure répartie sur plusieurs Zones de disponibilité est minime voire nul, et cela grâce à une latence inférieure à deux millisecondes entre ces zones.

Il est possible de combiner les Zones de de disponibilité avec les Groupes à haute disponibilité.

Microsoft met également à disposition un outil graphique intéressant sur les composantes de l’infrastructure Azure afin d’en savoir un peu plus :

Comme pour presque tous les articles dédiés Azure Virtual Desktop, voici différents tests pour en évaluer l’impact dans le déploiement de vos ressources.

Etape 0 : Rappel des prérequis

Des prérequis sont nécessaires pour réaliser ces démonstrations AVD :

  • Un tenant Microsoft
  • Une souscription Azure valide
  • Un réseau virtuel existant sur Azure

La mise en place d’une notion de disponibilité doit se faire lors de la création des machines virtuelles. Il n’est plus possible d’agir dessus une fois les machines virtuelles déployées. Cela est donc paramétrable uniquement :

  • Lors de la création du pool d’hôtes AVD
  • Lors de l’ajout de nouvelles machines virtuelles à un environnement AVD existant.

Test A : AVD + Groupe à haute disponibilité

Commencez par déployer un pool d’hôtes AVD grâce à la barre de recherche du portail Azure :

Tapez « virtual desktop » dans la barre de recherche pour voir le service AVD apparaître.

Remplissez le premier onglet sans spécificité particulière :

Continuez sur les éléments de base de vos machines virtuelles AVD :

L’option ci-dessous nous invite à préciser la notion de disponibilité voulue. Choisissez ici Groupe à haute disponibilité :

Cliquez comme ceci pour en créer un nouveau Groupe à haute disponibilité :

Spécifiez le nom et les nombres de domaines de mise à jour et d’erreurs voulus :

Terminez de remplir les informations de cet onglet sans spécificité particulière :

Créez également un workspace AVD :

Lancez la création de votre environnement Azure Virtual Desktop :

Attendez que votre déploiement AVD se termine :

Contrôlez plusieurs machines virtuelles et constatez le Groupe à haute disponibilité dont elles dépendent :

Consultez l’ensemble des informations de votre Groupe à haute disponibilité en recherchant directement cette ressource Azure depuis votre groupe de ressources :

Ses paramétrages de base ne sont malheureusement plus modifiables :

L’ajout de nouvelle machines virtuelles à votre pool d’hôtes AVD avec ce même Groupe à haute disponibilité est toujours accessible.

La répartition des machines virtuelles est toujours faite en round-robin (équitable)

Finalement, le déploiement d’un environnement Azure Virtual Desktop via le portail Azure prend bien en charge la répartition des machines virtuelles du pool d’hôtes dans un Groupe à haute disponibilité.

Continuons maintenant avec un second test dédié aux Zones de disponibilité.

Test B : AVD + Zones de disponibilité

Là encore, nous allons commencer par déployer un second pool d’hôtes AVD. Repartez depuis la barre de recherche du portail Azure pour accéder au service AVD :

Tapez « virtual desktop » dans la barre de recherche pour voir le service AVD apparaître.

Remplissez là encore le premier onglet sans spécificité particulière :

Continuez sur les éléments de base de vos machines virtuelles AVD :

Choisissez dans le même menu déroulant Zones de disponibilité, puis sélectionnez les 3 Zones disponibles dans la région Suisse Nord :

Terminez de remplir les informations de cet onglet sans spécificité particulière :

Créez là encore un workspace AVD :

Lancez la création de votre environnement Azure Virtual Desktop :

Attendez que votre second déploiement AVD se termine :

Contrôlez plusieurs machines virtuelles et constatez la Zone de disponibilité dont elles dépendent :

A l’inverse du Groupe à haute disponibilité, il n’existe pas de ressource Azure symbolisant la Zones de disponibilité. Là encore, plus aucun paramétrage n’est modifiable après création.

Ici aussi, le déploiement d’un environnement Azure Virtual Desktop via le portail Azure prend lui aussi en charge la répartition des machines virtuelles du pool d’hôtes dans plusieurs Zones de disponibilité.

Remarque importante

Une différence subtile existe les Groupes à haute disponibilité et les Zones de disponibilité. Le premier est bien un groupe dont sont associées plusieurs machines virtuelles, tandis que le second est une affectation d’une machine virtuelle à un datacenter (zone) spécifique.

Au final, pour que ces deux services Azure fassent sens dans votre architecture :

  • Je n’ai besoin que d’un seul groupe à haute disponibilité pour plusieurs VMs
  • J’ai besoin de plusieurs zones de disponibilité pour plusieurs VMs

Pourquoi cette précision ?

Car il arrive souvent qu’un doute s’installe sur lesquelles et combien de ces ressources (Groupe à haute disponibilité / Zones de disponibilité) sont nécessaires.

Conclusion

Azure Virtual Desktop continue de progresser en automatisation et en simplicité de déploiement. Le fait que de plus en plus de régions Azure disposent de Zones de disponibilité est une très bonne nouvelle pour la résilience des services Cloud. Enfin Dean de l’Azure Academy nous en reparle en détail dans cette vidéo ????????

Conditionnez l’accès de votre AVD

Je souhaitais faire cet article depuis quelques temps déjà. Comme pour les autres services disponibles sur le Cloud Microsoft, Azure Virtual Desktop nécessite une sécurité renforcée. Hors de question de laisser un accès ouvert aux applications de l’entreprise avec un simple identifiant / mot de passe.

Dans cet article, nous allons commencer par reprendre quelques bases sur l’accès conditionnel disponible sur Azure AD. Puis nous allons le mettre en oeuvre dans un environnement Azure Virtual Desktop.

Qu’est-ce que l’Accès Conditionnel proposé par Azure AD ?

Tous les environnements informatiques sont quête d’une protection toujours plus efficace pour se prémunir des intrusions extérieures. L’ouverture des architectures IT au travers d’un hébergeur Cloud apporte une plus grande disponibilité de l’information aux utilisateurs, mais occasionne un plus de grand nombre de connexions à distances, et donc de situations à gérer pour la sécurité IT.

Le périmètre de sécurité moderne s’étend désormais au-delà du réseau d’une organisation pour inclure l’identité de l’utilisateur et de l’appareil. Les organisations peuvent utiliser des signaux d’identité dans le cadre de leurs décisions de contrôle d’accès.

Microsoft Doc

Pour cela, Microsoft propose d’intégrer dans le processus d’authentification à Azure AD de nouvelles étapes, sous forme de police :

Le schéma ci-dessus est une vue simplifiée des 3 étapes du processus d’accès conditionnel.

Signal : pour Azure AD, l’accès conditionnel repose sur un certain nombre de signaux ou paramètres. Ces derniers sont les éléments mêmes qui caractérise la connexion de l’utilisateur, tels que :

  • Emplacement (adresse IP)
  • Appareil (OS, version, conformité, …)
  • Utilisateur Azure AD
  • Application interrogée
  • IA (Détection des risques en temps réel par Azure AD Identity Protection)

Décision : la décision sera alors le résultat dicté par la police d’accès conditionnel en correspondance avec les signaux. Il est question ici de bloquer l’accès à l’utilisateur, ou de l’autoriser selon les conditions particulières. Ces conditions correspondent à des mesures de sécurité supplémentaires, telles que :

  • Exiger une authentification multifacteur (cas plus utilisé)
  • Exiger que l’appareil soit marqué comme conforme
  • Exiger un appareil joint en hybride à Azure AD
  • Exiger une stratégie de protection des applications

Application : apporte une supervision des sessions et des accès utilisateur aux applications en fonction des stratégies d’accès et de session, telles que :

  • Empêcher l’exfiltration des données
  • Protéger lors du téléchargement
  • Empêcher le chargement de fichiers sans label
  • Bloquer les programmes malveillants potentiels
  • Surveiller les sessions utilisateur pour la conformité
  • Bloquer l’accès

Quelles sont les licences nécessaires pour l’accès conditionnel d’Azure AD ?

L’utilisation de l’accès conditionnel d’Azure AD est une composante des licences Azure AD Premium P1. Cela est donc bien différent des offres disponibles pour disposer de l’authentification multifacteur (Challenge MFA).

Vous retrouvez donc le service d’accès conditionnel dans un grand nombre de licences utilisateurs, dont les suivantes :

  • Azure AD Premium P1
  • Azure AD Premium P2
  • Enterprise Mobility + Security E3
  • Enterprise Mobility + Security E5
  • Microsoft 365 Business Premium
  • Microsoft 365 A3
  • Microsoft 365 A5
  • Microsoft 365 F1
  • Microsoft 365 F3
  • Microsoft 365 F5 Security
  • Microsoft 365 F5 Security + Compliance

Qu’est-ce qu’alors la licence directement renseignée au niveau du tenant ?

Cette information provient des licences assignées aux utilisateurs du tenant. Ce n’est pas à proprement parler d’une licence ou un service du tenant :

Certains services clients ne sont actuellement pas capables de limiter les avantages à des utilisateurs spécifiques. Des efforts doivent être déployés pour limiter les avantages du service aux utilisateurs sous licence.

Doc Microsoft

Autrement dit, une seule licence ayant la fonctionnalité d’accès conditionnel active l’option pour l’ensemble des utilisateurs du même tenant. Seulement, les règles d’utilisation du service exigent que chaque utilisateur soit couvert par une licence disposant de cette fonctionnalité.

Voici un autre tenant Azure ne disposant d’aucune licence.

Comment l’accès conditionnel est vécu par un utilisateur ?

Une fois l’accès conditionnel mis en place via une police, la sécurité est immédiatement renforcée par l’application de celle-ci. L’image ci-dessous montre en exemple une authentification multifacteur déployée par ce mécanisme pour protéger le portail Azure :

L’accès au portail Azure est conditionné à une authentification multifacteur pour cet utilisateur : challenge MFA.

L’absence de réponse entraîne alors un blocage dans le processus d’authentification et donc de l’accès au portail Azure pour l’utilisateur :

En alternative, si l’utilisateur ne peut pas utiliser cette méthode, Il lui est malgré tout possible de continuer le processus d’authentification par une autre mesure disponible dans la double authentification :

Les réussites ou les échecs des connexions d’utilisateurs sont directement visibles dans le journal des connexions de l’utilisateur sur Azure AD :

Un clic sur une authentification affiche alors les détails et l’application de la police utilisée :

Essai I : Absence de règle d’accès conditionnel

Le premier essai que nous allons faire repose sur aucune configuration particulière.

L’accès au service Azure Virtual Desktop se fait en HTML 5 via l’URL officielle. L’accès conditionnel marcherait également avec les applications installées sur le poste en local, comme le client Remote Desktop, disponible ici au téléchargement.

Aucun blocage ni contrainte pour l’utilisateur n’est constaté :

La sécurité y est donc minimale et l’obtention du login et du mot de passe par un tier permet de se connecter à son environnement et d’accéder aux données.

Essai II : Mise en place d’une règle de blocage total

Le second essai nécessite la création d’une police d’accès conditionnel. Connectez-vous au portail d’Azure et rendez-vous dans le service Azure AD avec un compte administrateur adéquat :

Ouvrez le menu de la Sécurité :

Rentrez dans la section d’Accès conditionnel :

Créez votre nouvelle Police :

Saisissez un nom à votre police et sélectionnez votre utilisateur de test :

Cherchez l’application Azure Virtual Desktop dans la section suivante :

Définissez la décision sur Bloquer l’accès :

Activez votre police et validez sa création :

Attendez quelques minutes et retester l’accès à Azure Virtual Desktop sur votre utilisateur. Pour information, l’accès conditionnel d’Azure AD dispose d’une fonction Et Si pour tester vos règles avant de les appliquer :

Quelques minutes plus tard, le test de connexion nous montre que blocage est bien effectif pour cet utilisateur :

Les conditions d’authentification sont bien réunies, mais ici l’utilisateur n’a tout simplement par le droit de se connecter à AVD.

Essai III : Mise en place d’une règle pour exiger la MFA

Retournez sur votre accès conditionnel et cliquez sur votre police pour la modifier :

Modifiez la décision pour autoriser l’accès à Azure Virtual Desktop, sous réserve d’un succès au challenge MFA par votre utilisateur de test :

Retentez la connexion à Azure Virtual Desktop avec votre utilisateur de test. La modification MFA de la police est bien prise en compte ici :

Dans mon cas, l’utilisateur est alors invité à enregistrer une ou des méthodes pour le challenge MFA pour poursuivre cette nouvelle opération d’authentification. L’application Microsoft Authenticator est proposée en tant que première méthode du challenge à configurer :

Il est possible de choisir une autre méthode.

La méthode MFA choisie est immédiatement vérifiée pour éviter un blocage ultérieur :

Essai IV : Mise en place d’une règle pour bloquer la connexion autre qu’au bureau

La restriction ou le blocage d’un service comme Azure Virtual Desktop est possible selon la localisation de l’utilisateur par son adresse IP. Retournez sur votre police pour la modifier comme ceci :

Pensez à créer votre location de confiance, en reprenant votre propre IP publique :

Retentez la connexion de votre utilisateur à AVD et constatez l’absence de blocage ou de challenge MFA :

Un contrôle dans le journal des connexions nous montre bien le processus d’exclusion de la police d’accès conditionnel grâce à mon adresse IP publique, exclue :

Essai V : Mise en place d’une règle pour exiger le challenge MFA toutes les heures

La mémorisation constante du challenge MFA sur une poste peut être considérée comme un risque sécuritaire, spécialement si le poste est en accès libre pour différents utilisateurs.

Retournez sur votre police pour la modifier comme ceci :

Effectuez l’authentification de votre utilisateur et réussissez le challenge MFA :

Validez la présence des icônes et attendez une heure. Une heure plus tard, rafraîchissez votre AVD :

Une MFA est bien redemandée après le délai défini dans la police d’accès conditionnel.

Conclusion :

Grâce à l’accès conditionnel d’Azure AD, il est assez facile de renforcer la sécurité d’Azure Virtual Desktop. Comme toujours, Microsoft rappelle les risques encourus à seulement utiliser un login et mot de passe pour seule sécurité. L’excellente vidéo de Dean nous montre cela en détail :

En espérant que cela a pu vous aider à mieux sécuriser votre environnement Cloud ????